75 research outputs found

    Are Small GTPases Signal Hubs in Sugar-Mediated Induction of Fructan Biosynthesis?

    Get PDF
    External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling

    Calcium Effects on Stomatal Guard Cells

    No full text

    Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure.

    Get PDF
    STOMATTA allow the diffusion of CO2 into the leaf for photosynthesis and the diffusion of H2O out of the leaf during transpiration1,2. This gaseous exchange is regulated by pairs of guard cells that surround each stomatal pore. During water stress the loss of water through transpiration is reduced in response to abscisic acid3, a naturally occurring plant growth regulator which is also present in certain mammals4, algae5 and fungi6, by the promotion of stomatal closure and inhibition of opening7. This involves alterations to guard cell turgor, causing the cells to shrink and thereby reducing the size of the stomatal pore. These changes are driven by cation and anion effluxes8. It has been proposed that an abscisic acid-dependent increase in the concentration of guard cell cytosolic free calcium triggers the intracellular machinery responsible for stomatal closure9(for a review, see ref. 10), but attempts to test this hypothesis by measuring [45Ca] fluxes have produced equivocal results11. Using the fluorescent calcium indicator fura-2, we report that abscisic acid induces a rapid increase in guard cell cytosolic free Ca2+ in Commelina communisL., and that this increase precedes stomatal closure. These results strongly support the suggestion that Ca2+ is an intracellular second messenger in this response

    AtALMT9 is a malate-activated vacuolar chloride channel required for stomatal opening in Arabidopsis

    Get PDF
    Water deficit strongly affects crop productivity. Plants control water loss and CO2 uptake by regulating the aperture of the stomatal pores within the leaf epidermis. Stomata aperture is regulated by the two guard cells forming the pore and changing their size in response to ion uptake and release. While our knowledge about potassium and chloride fluxes across the plasma membrane of guard cells is advanced, little is known about fluxes across the vacuolar membrane. Here we present the molecular identification of the long-sought-after vacuolar chloride channel. AtALMT9 is a chloride channel activated by physiological concentrations of cytosolic malate. Single-channel measurements demonstrate that this activation is due to a malate-dependent increase in the channel open probability. Arabidopsis thaliana atalmt9 knockout mutants exhibited impaired stomatal opening and wilt more slowly than the wild type. Our findings show that AtALMT9 is a vacuolar chloride channel having a major role in controlling stomata aperture
    • …
    corecore