32 research outputs found

    Plxdc2 Is a Mitogen for Neural Progenitors

    Get PDF
    The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system

    Interplay between n-3 and n-6 long-chain polyunsaturated fatty acids and the endocannabinoid system in brain protection and repair.

    Get PDF
    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFA) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) have shown beneficial effects on learning and memory, neuroinflammatory processes and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-archidonoylglycerol (2-AG) are the most widely studied endocannabinoids, and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    Brazilian Consensus on Photoprotection

    Full text link

    PRECISION CALCULATIONS OF HEAVY BOSON PRODUCTION- YFS MONTE CARLO APPROACH

    Get PDF
    In this talk I present the current status of the family of Monte Carlo programs for four-fermion physics based on the Yennie-Frautschie-Suura resummation of soft real and virtual photons. I focus on their applications to LEP2.
    corecore