83 research outputs found

    Understanding Cancer Survivors’ Reasons to Medicate With Cannabis: A Qualitative Study Based on the Theory of Planned Behavior

    Get PDF
    Background Prior to nonmedical cannabis legalization in Canada, individuals were only able to access cannabis legally through licensed producers with medical authorization. Now with an additional legal access system designed for nonmedical purposes, it is unclear what factors influence cancer survivors’ decisions to medicate or not medicate cannabis as a complementary therapy to alleviate their cancer symptoms. Methods We recruited cancer survivors via social media. Interested individuals were purposively sampled to ensure maximization in terms of age, sex, and province of residence. Constructs of the Theory of Planned Behavior were explored during the telephone interviews as participants described what influenced their decisions to medicate or not medicate cannabis to manage their symptoms. Results Interviews were conducted with 33 cancer survivors. All individuals believed that cannabis would manage their cancer symptoms. Those that chose to medicate with cannabis provided a variety of reasons, including that cannabis was a more natural alternative; that it reduced their overall number of prescription drugs; and that safer products had become available with the legalization of nonmedical cannabis. Some individuals also indicated that support from physicians and validation from family and friends were important in their decision to medicate with cannabis. Individuals who opted not to medicate with cannabis raised concerns about the lack of scientific evidence and/or possible dependency issues. Some also felt their physician\u27s disapproval was a barrier to considering cannabis use. Conclusions The findings revealed that recreational legalization made using cannabis appear safer and easier to access for some cancer survivors. However, physicians’ censure of cannabis use for symptom management was a barrier for survivors considering its use

    Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters

    Full text link
    Recent progress in studies of globular clusters has shown that they are not simple stellar populations, being rather made of multiple generations. Evidence stems both from photometry and spectroscopy. A new paradigm is then arising for the formation of massive star clusters, which includes several episodes of star formation. While this provides an explanation for several features of globular clusters, including the second parameter problem, it also opens new perspectives about the relation between globular clusters and the halo of our Galaxy, and by extension of all populations with a high specific frequency of globular clusters, such as, e.g., giant elliptical galaxies. We review progress in this area, focusing on the most recent studies. Several points remain to be properly understood, in particular those concerning the nature of the polluters producing the abundance pattern in the clusters and the typical timescale, the range of cluster masses where this phenomenon is active, and the relation between globular clusters and other satellites of our Galaxy.Comment: In press (The Astronomy and Astrophysics Review

    Genetic diversity of NS5A protein from hepatitis C virus genotype 3a and its relationship to therapy response

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The quasispecies nature of HCV may have important implications for viral persistence, pathogenicity and resistance to antiviral agents. The variability of one of the viral proteins, NS5A, is believed to be related to the response to IFN therapy, the standard treatment for infection. In this study we analyzed the quasispecies composition of NS5A protein in patients infected with HCV genotype 3a, before IFN therapy.</p> <p>Methods</p> <p>Viral RNA was isolated from samples of 12 patients: four sustained virological responders (SVR), four non-responders (NR), and four end-of-treatment responders (ETR). cDNA was synthesized, the NS5A region was amplified and the fragments obtained were cloned. Fifteen clones from each patient were sequenced with eight primers, generating 179 contigs.</p> <p>Results</p> <p>Higher values for substitution (either synonymous or non-synonymous) and for distance were found in the SVR group. However, the NR group showed relatively more non-synonymous mutations than the other groups, owing to the higher values of dN/dS in complete NS5A and most specific regions. Overall, NS5A protein is undergoing purifying selection, since all dN/dS ratios values are below 0.5.</p> <p>Conclusions</p> <p>Our study provides an overview of the genetic variability of complete NS5A protein in HCV genotype 3a.</p

    Probing of Exosites Leads to Novel Inhibitor Scaffolds of HCV NS3/4A Proteinase

    Get PDF
    Hepatitis C is a treatment-resistant disease affecting millions of people worldwide. The hepatitis C virus (HCV) genome is a single-stranded RNA molecule. After infection of the host cell, viral RNA is translated into a polyprotein that is cleaved by host and viral proteinases into functional, structural and non-structural, viral proteins. Cleavage of the polyprotein involves the viral NS3/4A proteinase, a proven drug target. HCV mutates as it replicates and, as a result, multiple emerging quasispecies become rapidly resistant to anti-virals, including NS3/4A inhibitors.To circumvent drug resistance and complement the existing anti-virals, NS3/4A inhibitors, which are additional and distinct from the FDA-approved telaprevir and boceprevir α-ketoamide inhibitors, are required. To test potential new avenues for inhibitor development, we have probed several distinct exosites of NS3/4A which are either outside of or partially overlapping with the active site groove of the proteinase. For this purpose, we employed virtual ligand screening using the 275,000 compound library of the Developmental Therapeutics Program (NCI/NIH) and the X-ray crystal structure of NS3/4A as a ligand source and a target, respectively. As a result, we identified several novel, previously uncharacterized, nanomolar range inhibitory scaffolds, which suppressed of the NS3/4A activity in vitro and replication of a sub-genomic HCV RNA replicon with a luciferase reporter in human hepatocarcinoma cells. The binding sites of these novel inhibitors do not significantly overlap with those of α-ketoamides. As a result, the most common resistant mutations, including V36M, R155K, A156T, D168A and V170A, did not considerably diminish the inhibitory potency of certain novel inhibitor scaffolds we identified.Overall, the further optimization of both the in silico strategy and software platform we developed and lead compounds we identified may lead to advances in novel anti-virals

    Accommodating Dynamic Oceanographic Processes and Pelagic Biodiversity in Marine Conservation Planning

    Get PDF
    Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100,000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper (arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022
    corecore