998 research outputs found
Valley-spin blockade and spin resonance in carbon nanotubes
Manipulation and readout of spin qubits in quantum dots made in III-V
materials successfully rely on Pauli blockade that forbids transitions between
spin-triplet and spin-singlet states. Quantum dots in group IV materials have
the advantage of avoiding decoherence from the hyperfine interaction by
purifying them with only zero-spin nuclei. Complications of group IV materials
arise from the valley degeneracies in the electronic bandstructure. These lead
to complicated multiplet states even for two-electron quantum dots thereby
significantly weakening the selection rules for Pauli blockade. Only recently
have spin qubits been realized in silicon devices where the valley degeneracy
is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade
can be observed by lifting valley degeneracy through disorder. In clean
nanotubes, quantum dots have to be made ultra-small to obtain a large energy
difference between the relevant multiplet states. Here we report on
low-disorder nanotubes and demonstrate Pauli blockade based on both valley and
spin selection rules. We exploit the bandgap of the nanotube to obtain a large
level spacing and thereby a robust blockade. Single-electron spin resonance is
detected using the blockade.Comment: 31 pages including supplementary informatio
Coupling molecular spin states by photon-assisted tunneling
Artificial molecules containing just one or two electrons provide a powerful
platform for studies of orbital and spin quantum dynamics in nanoscale devices.
A well-known example of these dynamics is tunneling of electrons between two
coupled quantum dots triggered by microwave irradiation. So far, these
tunneling processes have been treated as electric dipole-allowed
spin-conserving events. Here we report that microwaves can also excite
tunneling transitions between states with different spin. In this work, the
dominant mechanism responsible for violation of spin conservation is the
spin-orbit interaction. These transitions make it possible to perform detailed
microwave spectroscopy of the molecular spin states of an artificial hydrogen
molecule and open up the possibility of realizing full quantum control of a two
spin system via microwave excitation.Comment: 13 pages, 9 figure
Electrically driven single electron spin resonance in a slanting Zeeman field
The rapidly rising fields of spintronics and quantum information science have
led to a strong interest in developing the ability to coherently manipulate
electron spins. Electron spin resonance (ESR) is a powerful technique to
manipulate spins that is commonly achieved by applying an oscillating magnetic
field. However, the technique has proven very challenging when addressing
individual spins. In contrast, by mixing the spin and charge degrees of freedom
in a controlled way through engineered non-uniform magnetic fields, electron
spin can be manipulated electrically without the need of high-frequency
magnetic fields. Here we realize electrically-driven addressable spin rotations
on two individual electrons by integrating a micron-size ferromagnet to a
double quantum dot device. We find that the electrical control and spin
selectivity is enabled by the micro-magnet's stray magnetic field which can be
tailored to multi-dots architecture. Our results demonstrate the feasibility of
manipulating electron spins electrically in a scalable way.Comment: 25 pages, 6 figure
- âŠ