998 research outputs found

    Valley-spin blockade and spin resonance in carbon nanotubes

    Full text link
    Manipulation and readout of spin qubits in quantum dots made in III-V materials successfully rely on Pauli blockade that forbids transitions between spin-triplet and spin-singlet states. Quantum dots in group IV materials have the advantage of avoiding decoherence from the hyperfine interaction by purifying them with only zero-spin nuclei. Complications of group IV materials arise from the valley degeneracies in the electronic bandstructure. These lead to complicated multiplet states even for two-electron quantum dots thereby significantly weakening the selection rules for Pauli blockade. Only recently have spin qubits been realized in silicon devices where the valley degeneracy is lifted by strain and spatial confinement. In carbon nanotubes Pauli blockade can be observed by lifting valley degeneracy through disorder. In clean nanotubes, quantum dots have to be made ultra-small to obtain a large energy difference between the relevant multiplet states. Here we report on low-disorder nanotubes and demonstrate Pauli blockade based on both valley and spin selection rules. We exploit the bandgap of the nanotube to obtain a large level spacing and thereby a robust blockade. Single-electron spin resonance is detected using the blockade.Comment: 31 pages including supplementary informatio

    Coupling molecular spin states by photon-assisted tunneling

    Get PDF
    Artificial molecules containing just one or two electrons provide a powerful platform for studies of orbital and spin quantum dynamics in nanoscale devices. A well-known example of these dynamics is tunneling of electrons between two coupled quantum dots triggered by microwave irradiation. So far, these tunneling processes have been treated as electric dipole-allowed spin-conserving events. Here we report that microwaves can also excite tunneling transitions between states with different spin. In this work, the dominant mechanism responsible for violation of spin conservation is the spin-orbit interaction. These transitions make it possible to perform detailed microwave spectroscopy of the molecular spin states of an artificial hydrogen molecule and open up the possibility of realizing full quantum control of a two spin system via microwave excitation.Comment: 13 pages, 9 figure

    Electrically driven single electron spin resonance in a slanting Zeeman field

    Full text link
    The rapidly rising fields of spintronics and quantum information science have led to a strong interest in developing the ability to coherently manipulate electron spins. Electron spin resonance (ESR) is a powerful technique to manipulate spins that is commonly achieved by applying an oscillating magnetic field. However, the technique has proven very challenging when addressing individual spins. In contrast, by mixing the spin and charge degrees of freedom in a controlled way through engineered non-uniform magnetic fields, electron spin can be manipulated electrically without the need of high-frequency magnetic fields. Here we realize electrically-driven addressable spin rotations on two individual electrons by integrating a micron-size ferromagnet to a double quantum dot device. We find that the electrical control and spin selectivity is enabled by the micro-magnet's stray magnetic field which can be tailored to multi-dots architecture. Our results demonstrate the feasibility of manipulating electron spins electrically in a scalable way.Comment: 25 pages, 6 figure
    • 

    corecore