18 research outputs found
Limitations of conventional drinking water technologies in pollutant removal
This chapter gives an overview of the more traditional drinking water treatment from ground and surface waters. Water is treated to meet the objectives of drinking water quality and standards. Water treatment and water quality are therefore closely connected. The objectives for water treatment are to prevent acute diseases by exposure to pathogens, to prevent long-term adverse health effects by exposure to chemicals and micropollutants, and finally to create a drinking water that is palatable and is conditioned in such a way that transport from the treatment works to the customer will not lead to quality deterioration. Traditional treatment technologies as described in this chapter are mainly designed to remove macro parameters such as suspended solids, natural organic matter, dissolved iron and manganese, etc. The technologies have however only limited performance for removal of micropollutants. Advancing analytical technologies and increased and changing use of compounds however show strong evidence of new and emerging threats to drinking water quality. Therefore, more advanced treatment technologies are required.</p
Isoform-selective ATAD2 chemical probe with novel chemical structure and unusual mode of action
ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology
Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals
In the current batch study, we investigated the effect of solution properties, competing ligands (phosphate (P(V)) and sulfate), and complexing metal (calcium (Ca2+)) on tetracycline (TTC) and oxytetracycline (OTC) sorption by Al-based drinking water treatment residuals (Al-WTR). The sorption behavior for both TTC and OTC on Al-WTR was pH dependent. The sorption in absence of competing ligands and complexing metal increased with increasing pH up to circum-neutral pH and then decreased at higher pH. The presence of P(V) when added simultaneously had a significant negative effect (p \u3c 0.001) on the sorption of TTC and OTC adsorbed by Al-WTR at higher TTC/OTC:P ratios. However, when P(V) was added after the equilibration of TTC and OTC by Al-WTR, the effect was minimal and insignificant (p \u3e 0.1). The presence of sulfate had a minimal/negligible effect on the sorption of TCs by Al-WTR. A significant negative effect (p \u3c 0.001) on the adsorption of TCs by Al-WTR was observed in the pH range below 5 and at higher TCs:Ca2+ ratios, probably due to TCs-Ca2+ complex formation. Fourier transform infrared (FTIR) analysis indicated the possibility of inner-sphere-type bonding by the functional groups of OTC/TTC on Al-WTR surface. Results from the batch sorption study indicate high affinity of Al-WTR for TCs in the pH range 4–8 (majorly encountered pH in the environment) in the presence of competing ligands and complexing metal