167 research outputs found

    Optimizing Combination Therapies with Existing and Future CML Drugs

    Get PDF
    Small-molecule inhibitors imatinib, dasatinib and nilotinib have been developed to treat Chromic Myeloid Leukemia (CML). The existence of a triple-cross-resistant mutation, T315I, has been a challenging problem, which can be overcome by finding new inhibitors. Many new compounds active against T315I mutants are now at different stages of development. In this paper we develop an algorithm which can weigh different combination treatment protocols according to their cross-resistance properties, and find the protocols with the highest probability of treatment success. This algorithm also takes into account drug toxicity by minimizing the number of drugs used, and their concentration. Although our methodology is based on a stochastic model of CML microevolution, the algorithm itself does not require measurements of any parameters (such as mutation rates, or division/death rates of cells), and can be used by medical professionals without a mathematical background. For illustration, we apply this algorithm to the mutation data obtained in [1], [2]

    Combination of Two but Not Three Current Targeted Drugs Can Improve Therapy of Chronic Myeloid Leukemia

    Get PDF
    Chronic myeloid leukemia (CML) is a cancer of the hematopoietic system and has been treated with the drug Imatinib relatively successfully. Drug resistance, acquired by mutations, is an obstacle to success. Two additional drugs are now considered and could be combined with Imatinib to prevent resistance, Dasatinib and Nilotinib. While most mutations conferring resistance to one drug do not confer resistance to the other drugs, there is one mutation (T315I) that induces resistance against all three drugs. Using computational methods, the combination of two drugs is found to increase the probability of treatment success despite this cross-resistance. Combining more than two drugs, however, does not provide further advantages. We also explore possible combination therapies using drugs currently under development. We conclude that among the targeted drugs currently available for the treamtent of CML, only the two most effective ones should be used in combination for the prevention of drug resistance

    A Dynamical Systems Model for Combinatorial Cancer Therapy Enhances Oncolytic Adenovirus Efficacy by MEK-Inhibition

    Get PDF
    Oncolytic adenoviruses, such as ONYX-015, have been tested in clinical trials for currently untreatable tumors, but have yet to demonstrate adequate therapeutic efficacy. The extent to which viruses infect targeted cells determines the efficacy of this approach but many tumors down-regulate the Coxsackievirus and Adenovirus Receptor (CAR), rendering them less susceptible to infection. Disrupting MAPK pathway signaling by pharmacological inhibition of MEK up-regulates CAR expression, offering possible enhanced adenovirus infection. MEK inhibition, however, interferes with adenovirus replication due to resulting G1-phase cell cycle arrest. Therefore, enhanced efficacy will depend on treatment protocols that productively balance these competing effects. Predictive understanding of how to attain and enhance therapeutic efficacy of combinatorial treatment is difficult since the effects of MEK inhibitors, in conjunction with adenovirus/cell interactions, are complex nonlinear dynamic processes. We investigated combinatorial treatment strategies using a mathematical model that predicts the impact of MEK inhibition on tumor cell proliferation, ONYX-015 infection, and oncolysis. Specifically, we fit a nonlinear differential equation system to dedicated experimental data and analyzed the resulting simulations for favorable treatment strategies. Simulations predicted enhanced combinatorial therapy when both treatments were applied simultaneously; we successfully validated these predictions in an ensuing explicit test study. Further analysis revealed that a CAR-independent mechanism may be responsible for amplified virus production and cell death. We conclude that integrated computational and experimental analysis of combinatorial therapy provides a useful means to identify treatment/infection protocols that yield clinically significant oncolysis. Enhanced oncolytic therapy has the potential to dramatically improve non-surgical cancer treatment, especially in locally advanced or metastatic cases where treatment options remain limited.National Institutes of Health (U.S.) (Grant R01 CA118545)National Institutes of Health (U.S.) (Grant R01 CA095701)National Institutes of Health (U.S.) (Grant U54 CA11297)National Institutes of Health (U.S.) (Grant U54-CA112967

    HIV Antigen Incorporation within Adenovirus Hexon Hypervariable 2 for a Novel HIV Vaccine Approach

    Get PDF
    Adenoviral (Ad) vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. However, in some cases these conventional Ad-based vaccines have had sub-optimal clinical results. These sub-optimal results are attributed in part to pre-existing Ad serotype 5 (Ad5) immunity. In order to circumvent the need for antigen expression via transgene incorporation, the “antigen capsid-incorporation” strategy has been developed and used for Ad-based vaccine development in the context of a few diseases. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. The major capsid protein hexon has been utilized for these capsid incorporation strategies due to hexon's natural role in the generation of anti-Ad immune response and its numerical representation within the Ad virion. Using this strategy, we have developed the means to incorporate heterologous peptide epitopes specifically within the major surface-exposed domains of the Ad capsid protein hexon. Our study herein focuses on generation of multivalent vaccine vectors presenting HIV antigens within the Ad capsid protein hexon, as well as expressing an HIV antigen as a transgene. These novel vectors utilize HVR2 as an incorporation site for a twenty-four amino acid region of the HIV membrane proximal ectodomain region (MPER), derived from HIV glycoprotein gp41 (gp41). Our study herein illustrates that our multivalent anti-HIV vectors elicit a cellular anti-HIV response. Furthermore, vaccinations with these vectors, which present HIV antigens at HVR2, elicit a HIV epitope-specific humoral immune response

    Ostriches Sleep like Platypuses

    Get PDF
    Mammals and birds engage in two distinct states of sleep, slow wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by slow, high amplitude brain waves, while REM sleep is characterized by fast, low amplitude waves, known as activation, occurring with rapid eye movements and reduced muscle tone. However, monotremes (platypuses and echidnas), the most basal (or ‘ancient’) group of living mammals, show only a single sleep state that combines elements of SWS and REM sleep, suggesting that these states became temporally segregated in the common ancestor to marsupial and eutherian mammals. Whether sleep in basal birds resembles that of monotremes or other mammals and birds is unknown. Here, we provide the first description of brain activity during sleep in ostriches (Struthio camelus), a member of the most basal group of living birds. We found that the brain activity of sleeping ostriches is unique. Episodes of REM sleep were delineated by rapid eye movements, reduced muscle tone, and head movements, similar to those observed in other birds and mammals engaged in REM sleep; however, during REM sleep in ostriches, forebrain activity would flip between REM sleep-like activation and SWS-like slow waves, the latter reminiscent of sleep in the platypus. Moreover, the amount of REM sleep in ostriches is greater than in any other bird, just as in platypuses, which have more REM sleep than other mammals. These findings reveal a recurring sequence of steps in the evolution of sleep in which SWS and REM sleep arose from a single heterogeneous state that became temporally segregated into two distinct states. This common trajectory suggests that forebrain activation during REM sleep is an evolutionarily new feature, presumably involved in performing new sleep functions not found in more basal animals

    Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer

    Get PDF
    Breast-conserving surgery followed by radiotherapy is effective in reducing recurrence; however, telangiectasia and fibrosis can occur as late skin side effects. As radiotherapy acts through producing DNA damage, we investigated whether genetic variation in DNA repair and damage response confers increased susceptibility to develop late normal skin complications. Breast cancer patients who received radiotherapy after breast-conserving surgery were examined for late complications of radiotherapy after a median follow-up time of 51 months. Polymorphisms in genes involved in DNA repair (APEX1, XRCC1, XRCC2, XRCC3, XPD) and damage response (TP53, P21) were determined. Associations between telangiectasia and genotypes were assessed among 409 patients, using multivariate logistic regression. A total of 131 patients presented with telangiectasia and 28 patients with fibrosis. Patients with variant TP53 genotypes either for the Arg72Pro or the PIN3 polymorphism were at increased risk of telangiectasia. The odds ratios (OR) were 1.66 (95% confidence interval (CI): 1.02–2.72) for 72Pro carriers and 1.95 (95% CI: 1.13–3.35) for PIN3 A2 allele carriers compared with non-carriers. The TP53 haplotype containing both variant alleles was associated with almost a two-fold increase in risk (OR 1.97, 95% CI: 1.11–3.52) for telangiectasia. Variants in the TP53 gene may therefore modify the risk of late skin toxicity after radiotherapy

    AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan

    Get PDF
    Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator of energy metabolic homeostasis and thus a major survival factor in a variety of metabolic stresses and also in the aging process. Metabolic syndrome is associated with a low-grade, chronic inflammation, primarily in adipose tissue. A low-level of inflammation is also present in the aging process. There are emerging results indicating that AMPK signaling can inhibit the inflammatory responses induced by the nuclear factor-κB (NF-κB) system. The NF-κB subunits are not direct phosphorylation targets of AMPK, but the inhibition of NF-κB signaling is mediated by several downstream targets of AMPK, e.g., SIRT1, PGC-1α, p53, and Forkhead box O (FoxO) factors. AMPK signaling seems to enhance energy metabolism while it can repress inflammatory responses linked to chronic stress, e.g., in nutritional overload and during the aging process. AMPK can inhibit endoplasmic reticulum and oxidative stresses which are involved in metabolic disorders and the aging process. Interestingly, many target proteins of AMPK are so-called longevity factors, e.g., SIRT1, p53, and FoxOs, which not only can increase the stress resistance and extend the lifespan of many organisms but also inhibit the inflammatory responses. The activation capacity of AMPK declines in metabolic stress and with aging which could augment the metabolic diseases and accelerate the aging process. We will review the AMPK pathways involved in the inhibition of NF-κB signaling and suppression of inflammation. We also emphasize that the capacity of AMPK to repress inflammatory responses can have a significant impact on both healthspan and lifespan
    corecore