132 research outputs found

    CD74 deficiency ameliorates Pseudomonas aeruginosa-induced ocular infection

    Get PDF
    Eye trauma and contact lens wear are the main factors that predispose to the development of infectious keratitis. The existing therapies fail to control the inflammation-driven tissue damage that occurs during Pseudomonas aeruginosa infection. Antibiotic treatment reduces bacterial burdens, but better interventions are needed to alleviate tissue damage resulting from local inflammation. We have previously documented that inhibition of macrophage migration inhibitory factor (MIF) reduces the bacterial levels and the inflammatory damage during keratitis. Here, we report that mice deficient for CD74, the putative MIF receptor, developed milder Pseudomonas aeruginosa-induced disease, characterized by decreased proinflammatory mediators and reduced bacterial presence in the cornea. However, topical inhibition of MIF using antibodies applied to the cornea further promoted recovery from disease, suggesting that in addition to MIF-dependent signaling events, MIF-triggered CD74-independent signaling pathways regulate sensitization to P. aeruginosa-induced infection

    Crayfish Recognize the Faces of Fight Opponents

    Get PDF
    The capacity to associate stimuli underlies many cognitive abilities, including recognition, in humans and other animals. Vertebrates process different categories of information separately and then reassemble the distilled information for unique identification, storage and recall. Invertebrates have fewer neural networks and fewer neural processing options so study of their behavior may reveal underlying mechanisms still not fully understood for any animal. Some invertebrates form complex social colonies and are capable of visual memory–bees and wasps, for example. This ability would not be predicted in species that interact in random pairs without strong social cohesion; for example, crayfish. They have chemical memory but the extent to which they remember visual features is unknown. Here we demonstrate that the crayfish Cherax destructor is capable of visual recognition of individuals. The simplicity of their interactions allowed us to examine the behavior and some characteristics of the visual features involved. We showed that facial features are learned during face-to-face fights, that highly variable cues are used, that the type of variability is important, and that the learning is context-dependent. We also tested whether it is possible to engineer false identifications and for animals to distinguish between twin opponents

    Flagellin-Induced Corneal Antimicrobial Peptide Production and Wound Repair Involve a Novel NF-κB–Independent and EGFR-Dependent Pathway

    Get PDF
    The bacterial protein flagellin plays a major role in stimulating mucosal surface innate immune response to bacterial infection and uniquely induces profound cytoprotection against pathogens, chemicals, and radiation. This study sought to determine signaling pathways responsible for the flagellin-induced inflammatory and cytoprotective effects on human corneal epithelial cells (HCECs).Flagellin purified from Pseudomonas aeruginosa (strain PAK) or live bacteria were used to challenge cultured HCECs. The activation of signaling pathways was assessed with Western blot, and the secretion of cytokine/chemokine and production of antimicrobial peptides (AMPs) were measured with ELISA and dot blot, respectively. Effects of flagellin on wound healing were assessed in cultured porcine corneas. L94A (a site mutation in TLR5 binding region) flagellin and PAK expressing L94A flagellin were unable to stimulate NF-kappaB activation, but were potent in eliciting EGFR signaling in a TGF-alpha-related pathway in HCECs. Concomitant with the lack of NF-kappaB activation, L94A flagellin was ineffective in inducing IL-6 and IL-8 production in HCECs. Surprisingly, the secretion of two inducible AMPs, LL-37 and hBD2, was not affected by L94A mutation. Similar to wild-type flagellin, L94A induced epithelial wound closure in cultured porcine cornea through maintaining EGFR-mediated signaling.Our data suggest that inflammatory response mediated by NF-kappaB can be uncoupled from epithelial innate defense machinery (i.e., AMP expression) and major epithelial proliferation/repair pathways mediated by EGFR, and that flagellin and its derivatives may have broad therapeutic applications in cytoprotection and in controlling infection in the cornea and other mucosal tissues

    Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia

    Get PDF
    We acquired diffusion tensor and structural MRI images on 103 patients with schizophrenia and 41 age-matched normal controls. The vector data was used to trace tracts from a region of interest in the anterior limb of the internal capsule to the prefrontal cortex. Patients with schizophrenia had tract paths that were significantly shorter in length from the center of internal capsule to prefrontal white matter. These tracts, the anterior thalamic radiations, are important in frontal-striatal-thalamic pathways. These results are consistent with findings of smaller size of the anterior limb of the internal capsule in patients with schizophrenia, diffusion tensor anisotropy decreases in frontal white matter in schizophrenia and hypothesized disruption of the frontal-striatal-thalamic pathway system

    Schizotypy and Behavioural Adjustment and the Role of Neuroticism

    Get PDF
    In the present study the relationship between behavioural adjustment following cognitive conflict and schizotypy was investigated using a Stroop colour naming paradigm. Previous research has found deficits with behavioural adjustment in schizophrenia patients. Based on these findings, we hypothesized that individual differences in schizotypy, a personality trait reflecting the subclinical expression of the schizophrenia phenotype, would be associated with behavioural adjustment. Additionally, we investigated whether such a relationship would be explained by individual differences in neuroticism, a non-specific measure of negative trait emotionality known to be correlated with schizotypy. 106 healthy volunteers (mean age: 25.1, 60% females) took part. Post-conflict adjustment was measured in a computer-based version of the Stroop paradigm. Schizotypy was assessed using the Schizotypal Personality Questionnaire (SPQ) and Neuroticism using the NEO-FFI. We found a negative correlation between schizotypy and post-conflict adjustment (r = -.30, p<.01); this relationship remained significant when controlling for effects of neuroticism. Regression analysis revealed that particularly the subscale No Close Friends drove the effect. Previous findings of deficits in cognitive control in schizophrenia patients were extended to the subclinical personality expression of the schizophrenia phenotype and found to be specific to schizotypal traits over and above the effects of negative emotionality

    Haloperidol differentially modulates prepulse inhibition and p50 suppression in healthy humans stratified for low and high gating levels

    Full text link
    Schizophrenia patients exhibit deficits in sensory gating as indexed by reduced prepulse inhibition (PPI) and P50 suppression, which have been linked to psychotic symptom formation and cognitive deficits. Although recent evidence suggests that atypical antipsychotics might be superior over typical antipsychotics in reversing PPI and P50 suppression deficits not only in schizophrenia patients, but also in healthy volunteers exhibiting low levels of PPI, the impact of typical antipsychotics on these gating measures is less clear. To explore the impact of the dopamine D2-like receptor system on gating and cognition, the acute effects of haloperidol on PPI, P50 suppression, and cognition were assessed in 26 healthy male volunteers split into subgroups having low vs high PPI or P50 suppression levels using a placebo-controlled within-subject design. Haloperidol failed to increase PPI in subjects exhibiting low levels of PPI, but attenuated PPI in those subjects with high sensorimotor gating levels. Furthermore, haloperidol increased P50 suppression in subjects exhibiting low P50 gating and disrupted P50 suppression in individuals expressing high P50 gating levels. Independently of drug condition, high PPI levels were associated with superior strategy formation and execution times in a subset of cognitive tests. Moreover, haloperidol impaired spatial working memory performance and planning ability. These findings suggest that dopamine D2-like receptors are critically involved in the modulation of P50 suppression in healthy volunteers, and to a lesser extent also in PPI among subjects expressing high sensorimotor gating levels. Furthermore, the results suggest a relation between sensorimotor gating and working memory performance
    • …
    corecore