190 research outputs found

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    Oink: an Implementation and Evaluation of Modern Parity Game Solvers

    Full text link
    Parity games have important practical applications in formal verification and synthesis, especially to solve the model-checking problem of the modal mu-calculus. They are also interesting from the theory perspective, as they are widely believed to admit a polynomial solution, but so far no such algorithm is known. In recent years, a number of new algorithms and improvements to existing algorithms have been proposed. We implement a new and easy to extend tool Oink, which is a high-performance implementation of modern parity game algorithms. We further present a comprehensive empirical evaluation of modern parity game algorithms and solvers, both on real world benchmarks and randomly generated games. Our experiments show that our new tool Oink outperforms the current state-of-the-art.Comment: Accepted at TACAS 201

    Cost-consciousness among Swiss doctors: a cross-sectional survey

    Get PDF
    BACKGROUND: Knowing what influences physicians attitudes toward health care costs is an important matter, because most health care expenditures are the results of doctors' decisions. Many decisions regarding medical tests and treatments are influenced by factors other than the expected benefit to the patient, including the doctor's demographic characteristics and concerns about cost and income. METHODS: Doctors (n = 1184) in Geneva, Switzerland, answered questions about their cost-consciousness, practice patterns (medical specialty, public.vs. private sector, number of patients per week, time spent with a new patient), work satisfaction, and stress from uncertainty. General linear models were used to identify independent risk factors of higher cost-consciousness. RESULTS: Most doctors agreed that trying to contain costs was their responsibility ("agree" or "totally agree": 90%) and that they should take a more prominent role in limiting the use of unnecessary tests (92%); most disagreed that doctors are too busy to worry about costs (69%) and that the cost of health care is only important if the patient has to pay for it out-of-pocket (88%). In multivariate analyses, cost-consciousness was higher among doctors in the public sector, those who saw fewer patients per week, who were most tolerant of uncertainty, and who were most satisfied with their work. CONCLUSION: Thus even in a setting with very high health care expenditures, doctors' stated cost-consciousness appeared to be generally high, even though it was not uniformly distributed among them

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The aim of this study was to investigate <it>in vitro </it>the cytotoxicity and antibacterial properties of four different endodontic sealers using human periodontal ligament fibroblast cell proliferation and visual analysis of growth inhibition.</p> <p>Methods</p> <p>A silicone (GuttaFlow), silicate (EndoSequence BC), zinc oxide eugenol (Pulp Canal Sealer EWT) and epoxy resin (AH Plus Jet) based sealer were incubated with PDL fibroblasts (10<sup>4 </sup>cells/ml, n = 6) up to 96 h. Cell proliferation (RFU) was determined by means of the Alamar Blue assay. Cell growth and morphology was visualized by means of fluorescent dyes. Possible antibacterial properties of the different sealers were visualized by means of SEM (<it>Enterococcus faecalis; Parvimonas micra</it>).</p> <p>Results</p> <p>Fibroblast proliferation depended on sealer and cultivation time. After 72 and 96 h GuttaFlow and EndoSequence BC showed relatively non-cytotoxic reactions, while Pulp Canal Sealer EWT and AH Plus Jet caused a significant decrease of cell proliferation (p < 0.001). Visualization of cell growth and morphology with various fluorescent dyes supplemented the results. No antibacterial effect of EndoSequence BC to <it>P. micra </it>was found, whereas GuttaFlow showed a weak, Pulp Canal Sealer EWT and AH Plus Jet extensive growth inhibition. Also, no antibacterial effect of GuttaFlow, EndoSequence BC or AH Plus Jet to <it>E. faecalis </it>could be detected.</p> <p>Conclusions</p> <p>These <it>in vitro </it>findings reveal that GuttaFlow and EndoSequence BC can be considered as biocompatible sealing materials. However, prior to their clinical employment, studies regarding their sealing properties also need to be considered.</p

    Efficient Parallel Strategy Improvement for Parity Games

    Get PDF
    We study strategy improvement algorithms for solving parity games. While these algorithms are known to solve parity games using a very small number of iterations, experimental studies have found that a high step complexity causes them to perform poorly in practice. In this paper we seek to address this situation. Every iteration of the algorithm must compute a best response, and while the standard way of doing this uses the Bellman-Ford algorithm, we give experimental results that show that one-player strategy improvement significantly outperforms this technique in practice. We then study the best way to implement one-player strategy improvement, and we develop an efficient parallel algorithm for carrying out this task, by reducing the problem to computing prefix sums on a linked list. We report experimental results for these algorithms, and we find that a GPU implementation of this algorithm shows a significant speedup over single-core and multi-core CPU implementations

    Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    Get PDF
    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells' interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered
    corecore