8 research outputs found

    A rise in NAD precursor nicotinamide mononucleotide (NMN) after injury promotes axon degeneration.

    Get PDF
    NAD metabolism regulates diverse biological processes, including ageing, circadian rhythm and axon survival. Axons depend on the activity of the central enzyme in NAD biosynthesis, nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2), for their maintenance and degenerate rapidly when this activity is lost. However, whether axon survival is regulated by the supply of NAD or by another action of this enzyme remains unclear. Here we show that the nucleotide precursor of NAD, nicotinamide mononucleotide (NMN), accumulates after nerve injury and promotes axon degeneration. Inhibitors of NMN-synthesising enzyme NAMPT confer robust morphological and functional protection of injured axons and synapses despite lowering NAD. Exogenous NMN abolishes this protection, suggesting that NMN accumulation within axons after NMNAT2 degradation could promote degeneration. Ectopic expression of NMN deamidase, a bacterial NMN-scavenging enzyme, prolongs survival of injured axons, providing genetic evidence to support such a mechanism. NMN rises prior to degeneration and both the NAMPT inhibitor FK866 and the axon protective protein Wld(S) prevent this rise. These data indicate that the mechanism by which NMNAT and the related Wld(S) protein promote axon survival is by limiting NMN accumulation. They indicate a novel physiological function for NMN in mammals and reveal an unexpected link between new strategies for cancer chemotherapy and the treatment of axonopathies

    Mitochondrial function — gatekeeper of intestinal epithelial cell homeostasis

    No full text
    The intestinal epithelium is a multicellular interface in close proximity to a dense microbial milieu that is completely renewed every 3-5 days. Pluripotent stem cells reside at the crypt, giving rise to transient amplifying cells that go through continuous steps of proliferation, differentiation and finally anoikis (a form of programmed cell death) while migrating upwards to the villus tip. During these cellular transitions, intestinal epithelial cells (IECs) possess distinct metabolic identities reflected by changes in mitochondrial activity. Mitochondrial function emerges as a key player in cell fate decisions and in coordinating cellular metabolism, immunity, stress responses and apoptosis. Mediators of mitochondrial signalling include molecules such as ATP and reactive oxygen species and interrelate with pathways such as the mitochondrial unfolded protein response (MT-UPR) and AMP kinase signalling, in turn affecting cell cycle progression and stemness. Alterations in mitochondrial function and MT-UPR activation are integral aspects of pathologies, including IBD and cancer. Mitochondrial signalling and concomitant changes in metabolism contribute to intestinal homeostasis and regulate IEC dedifferentiation-differentiation programmes in the context of diseases, suggesting that mitochondrial function as a cellular checkpoint critically contributes to disease outcome. This Review highlights mitochondrial function and MT-UPR signalling in epithelial cell stemness, differentiation and lineage commitment and illustrates mitochondrial function in intestinal diseases
    corecore