139 research outputs found

    An Exactly Solvable Model for the Integrability-Chaos Transition in Rough Quantum Billiards

    Full text link
    A central question of dynamics, largely open in the quantum case, is to what extent it erases a system's memory of its initial properties. Here we present a simple statistically solvable quantum model describing this memory loss across an integrability-chaos transition under a perturbation obeying no selection rules. From the perspective of quantum localization-delocalization on the lattice of quantum numbers, we are dealing with a situation where every lattice site is coupled to every other site with the same strength, on average. The model also rigorously justifies a similar set of relationships recently proposed in the context of two short-range-interacting ultracold atoms in a harmonic waveguide. Application of our model to an ensemble of uncorrelated impurities on a rectangular lattice gives good agreement with ab initio numerics.Comment: 29 pages, 5 figure

    Homozygous Deletion of Six Olfactory Receptor Genes in a Subset of Individuals with Beta-Thalassemia

    Get PDF
    Progress in the functional studies of human olfactory receptors has been largely hampered by the lack of a reliable experimental model system. Although transgenic approaches in mice could characterize the function of individual olfactory receptors, the presence of over 300 functional genes in the human genome becomes a daunting task. Thus, the characterization of individuals with a genetic susceptibility to altered olfaction coupled with the absence of particular olfactory receptor genes will allow phenotype/genotype correlations and vindicate the function of specific olfactory receptors with their cognate ligands. We characterized a 118 kb Ξ²-globin deletion and found that its 3β€² end breakpoint extends to the neighboring olfactory receptor region downstream of the Ξ²-globin gene cluster. This deletion encompasses six contiguous olfactory receptor genes (OR51V1, OR52Z1, OR51A1P, OR52A1, OR52A5, and OR52A4) all of which are expressed in the brain. Topology analysis of the encoded proteins from these olfactory receptor genes revealed that OR52Z1, OR52A1, OR52A5, and OR52A4 are predicted to be functional receptors as they display integral characteristics of G-proteins coupled receptors. Individuals homozygous for the 118 kb Ξ²-globin deletion are afflicted with Ξ²-thalassemia due to a homozygous deletion of the Ξ²-globin gene and have no alleles for the above mentioned olfactory receptors genes. This is the first example of a homozygous deletion of olfactory receptor genes in human. Although altered olfaction remains to be ascertained in these individuals, such a study can be carried out in Ξ²-thalassemia patients from Malaysia, Indonesia and the Philippines where this mutation is common. Furthermore, OR52A1 contains a Ξ³-globin enhancer, which was previously shown to confer continuous expression of the fetal Ξ³-globin genes. Thus, the hypothesis that Ξ²-thalassemia individuals, who are homozygous for the 118 kb deletion, may also have an exacerbation of their anemia due to the deletion of two copies of the Ξ³-globin enhancer element is worthy of consideration

    Spacelike Singularities and Hidden Symmetries of Gravity

    Get PDF
    We review the intimate connection between (super-)gravity close to a spacelike singularity (the "BKL-limit") and the theory of Lorentzian Kac-Moody algebras. We show that in this limit the gravitational theory can be reformulated in terms of billiard motion in a region of hyperbolic space, revealing that the dynamics is completely determined by a (possibly infinite) sequence of reflections, which are elements of a Lorentzian Coxeter group. Such Coxeter groups are the Weyl groups of infinite-dimensional Kac-Moody algebras, suggesting that these algebras yield symmetries of gravitational theories. Our presentation is aimed to be a self-contained and comprehensive treatment of the subject, with all the relevant mathematical background material introduced and explained in detail. We also review attempts at making the infinite-dimensional symmetries manifest, through the construction of a geodesic sigma model based on a Lorentzian Kac-Moody algebra. An explicit example is provided for the case of the hyperbolic algebra E10, which is conjectured to be an underlying symmetry of M-theory. Illustrations of this conjecture are also discussed in the context of cosmological solutions to eleven-dimensional supergravity.Comment: 228 pages. Typos corrected. References added. Subject index added. Published versio

    Fairy Tales: Attraction and Stereotypes in Same-Gender Relationships

    Get PDF
    We examine the process of romantic attraction in same-gender relationships using open and closed-ended questionnaire data from a sample of 120 men and women in Northern California. Agreeableness (e.g., kind, supportive) and Extraversion (e.g., fun, sense of humor) are the two most prominent bases of attraction, followed by Physical Attractiveness (e.g., appearance, sexy). The least important attractors represent traits associated with material success (e.g., financially secure, nice house). We also find evidence of seemingly contradictory attraction processes documented previously in heterosexual romantic relationships, in which individuals become disillusioned with the qualities in a partner that were initially appealing. Our findings challenge common stereotypes of same-gender relationships. The results document broad similarities between same-gender and cross-gender couples in attraction

    Loss of Regulator of G Protein Signaling 5 Exacerbates Obesity, Hepatic Steatosis, Inflammation and Insulin Resistance

    Get PDF
    BACKGROUND: The effect of regulator of G protein signaling 5 (RGS5) on cardiac hypertrophy, atherosclerosis and angiogenesis has been well demonstrated, but the role in the development of obesity and insulin resistance remains completely unknown. We determined the effect of RGS5 deficiency on obesity, hepatic steatosis, inflammation and insulin resistance in mice fed either a normal-chow diet (NC) or a high-fat diet (HF). METHODOLOGY/PRINCIPAL FINDINGS: Male, 8-week-old RGS5 knockout (KO) and littermate control mice were fed an NC or an HF for 24 weeks and were phenotyped accordingly. RGS5 KO mice exhibited increased obesity, fat mass and ectopic lipid deposition in the liver compared with littermate control mice, regardless of diet. When fed an HF, RGS5 KO mice had a markedly exacerbated metabolic dysfunction and inflammatory state in the blood serum. Meanwhile, macrophage recruitment and inflammation were increased and these increases were associated with the significant activation of JNK, IΞΊBΞ± and NF-ΞΊBp65 in the adipose tissue, liver and skeletal muscle of RGS5 KO mice fed an HF relative to control mice. These exacerbated metabolic dysfunction and inflammation are accompanied with decreased systemic insulin sensitivity in the adipose tissue, liver and skeletal muscle of RGS5 KO mice, reflected by weakened Akt/GSK3Ξ² phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that loss of RGS5 exacerbates HF-induced obesity, hepatic steatosis, inflammation and insulin resistance

    Cell Walls of Saccharomyces cerevisiae Differentially Modulated Innate Immunity and Glucose Metabolism during Late Systemic Inflammation

    Get PDF
    BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-Ξ±, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation. CONCLUSIONS: MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts

    Fine Tuning of Globin Gene Expression by DNA Methylation

    Get PDF
    Expression patterns in the globin gene cluster are subject to developmental regulation in vivo. While the Ξ³(A) and Ξ³(G) genes are expressed in fetal liver, both are silenced in adult erythrocytes. In order to decipher the role of DNA methylation in this process, we generated a YAC transgenic mouse system that allowed us to control Ξ³(A) methylation during development. DNA methylation causes a 20-fold repression of Ξ³(A) both in non-erythroid and adult erythroid cells. In erythroid cells this modification works as a dominant mechanism to repress Ξ³ gene expression, probably through changes in histone acetylation that prevent the binding of erythroid transcription factors to the promoter. These studies demonstrate that DNA methylation serves as an elegant in vivo fine-tuning device for selecting appropriate genes in the globin locus. In addition, our findings provide a mechanism for understanding the high levels of Ξ³-globin transcription seen in patients with Hereditary Persistence of Fetal Hemoglobin, and help explain why 5azaC and butyrate compounds stimulate Ξ³-globin expression in patients with Ξ²-hemoglobinopathies

    The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery

    Get PDF
    The International Human Epigenome Consortium (IHEC) coordinates the generation of a catalog of high-resolution reference epigenomes of major primary human cell types. The studies now presented (see the Cell Press IHEC web portal at http://www.cell.com/consortium/IHEC) highlight the coordinated achievements of IHEC teams to gather and interpret comprehensive epigenomic datasets to gain insights in the epigenetic control of cell states relevant for human health and disease
    • …
    corecore