2 research outputs found

    Taking the pulse of Mars via dating of a plume-fed volcano

    Get PDF
    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Volcanism in the Solar System.

    No full text
    The myriad bodies that occur in the Solar System have a wide range of properties, from giant gaseous planets such as Jupiter to small, solid, rocky satellites such as our Moon. Exploration by spacecraft during the past four decades has shown that volcanism — an important mechanism by which internal heat is transported to the surface — is common on many of these bodies. There are many common traits; for example, relatively quiet eruptions of molten rock occur on such diverse bodies as the Earth, Mars and Jupiter's moon Io. The volcanic constructs produced, however, vary strikingly, and range from Olympus Mons on Mars, at over 20 km high, to relatively tiny cones on Earth no more than a few tens of metres high. The recognition of icy volcanoes spewing water or organic liquids on some of Saturn's moons constitutes one of the most exciting results to emerge from recent space missions
    corecore