41 research outputs found

    The origins and development of Zuwīla, Libyan Sahara: an archaeological and historical overview of an ancient oasis town and caravan centre

    Get PDF
    Zuwīla in southwestern Libya (Fazzān) was one of the most important early Islamic centres in the Central Sahara, but the archaeological correlates of the written sources for it have been little explored. This paper brings together for the first time a detailed consideration of the relevant historical and archaeological data, together with new AMS radiocarbon dates from several key monuments. The origins of the settlement at Zuwīla were pre-Islamic, but the town gained greater prominence in the early centuries of Arab rule of the Maghrib, culminating with the establishment of an Ibāḍī state ruled by the dynasty of the Banū Khaṭṭāb, with Zuwīla its capital. The historical sources and the accounts of early European travellers are discussed and archaeological work at Zuwīla is described (including the new radiocarbon dates). A short gazetteer of archaeological monuments is provided as an appendix. Comparisons and contrasts are also drawn between Zuwīla and other oases of the ash-Sharqiyāt region of Fazzān. The final section of the paper presents a series of models based on the available evidence, tracing the evolution and decline of this remarkable site

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    Experimental progress in positronium laser physics

    Get PDF
    corecore