87 research outputs found

    Simple Formula for Nuclear Charge Radius

    Full text link
    A new formula for the nuclear charge radius is proposed, dependent on the mass number (A) and neutron excess (N-Z) in the nucleus. It is simple and it reproduces all the experimentally available mean square radii and their isotopic shifts of even--even nuclei much better than other frequently used relations.Comment: The paper contains 7 pages in LateX and 6 figures (available upon request) in postscript. Email: [email protected]

    Dynamical Dark Energy model parameters with or without massive neutrinos

    Full text link
    We use WMAP5 and other cosmological data to constrain model parameters in quintessence cosmologies, focusing also on their shift when we allow for non-vanishing neutrino masses. The Ratra-Peebles (RP) and SUGRA potentials are used here, as examples of slowly or fastly varying state parameter w(a). Both potentials depend on an energy scale \Lambda. Here we confirm the results of previous analysis with WMAP3 data on the upper limits on \Lambda, which turn out to be rather small (down to ~10^{-9} in RP cosmologies and ~10^{-5} for SUGRA). Our constraints on \Lambda are not heavily affected by the inclusion of neutrino mass as a free parameter. On the contrary, when the neutrino mass degree of freedom is opened, significant shifts in the best-fit values of other parameters occur.Comment: 9 pages, 3 figures, submitted to JCA

    Constraints on neutrino masses from WMAP5 and BBN in the lepton asymmetric universe

    Full text link
    In this paper, we put constraints on neutrino properties such as mass mνm_{\nu} and degeneracy parameters ξi\xi_i from WMAP5 data and light element abundances by using a Markov chain Monte Carlo (MCMC) approach. In order to take consistently into account the effects of the degeneracy parameters, we run the Big Bang Nucleosynthesis code for each value of ξi\xi_i and the other cosmological parameters to estimate the Helium abundance, which is then used to calculate CMB anisotropy spectra instead of treating it as a free parameter. We find that the constraint on mνm_{\nu} is fairly robust and does not vary very much even if the lepton asymmetry is allowed, and is given by mν<1.3eV\sum m_\nu < 1.3 \rm eV (9595 % \rm C.L.).Comment: 19 pages, 7 figures, 5 table

    Neutrinos as the messengers of CPT violation

    Get PDF
    CPT violation has the potential to explain all three existing neutrino anomalies without enlarging the neutrino sector. CPT violation in the Dirac mass terms of the three neutrino flavors preserves Lorentz invariance, but generates independent masses for neutrinos and antineutrinos. This specific signature is strongly motivated by braneworld scenarios with extra dimensions, where neutrinos are the natural messengers for Standard Model physics of CPT violation in the bulk. A simple model of maximal CPT violation is sufficient to explain the exisiting neutrino data quite neatly, while making dramatic predictions for the upcoming KamLAND and MiniBooNE experiments. Furthermore we obtain a promising new mechanism for baryogenesis

    Neutrino mass from cosmology: Impact of high-accuracy measurement of the Hubble constant

    Full text link
    Non-zero neutrino mass would affect the evolution of the Universe in observable ways, and a strong constraint on the mass can be achieved using combinations of cosmological data sets. We focus on the power spectrum of cosmic microwave background (CMB) anisotropies, the Hubble constant H_0, and the length scale for baryon acoustic oscillations (BAO) to investigate the constraint on the neutrino mass, m_nu. We analyze data from multiple existing CMB studies (WMAP5, ACBAR, CBI, BOOMERANG, and QUAD), recent measurement of H_0 (SHOES), with about two times lower uncertainty (5%) than previous estimates, and recent treatments of BAO from the Sloan Digital Sky Survey (SDSS). We obtained an upper limit of m_nu < 0.2eV (95% C.L.), for a flat LambdaCDM model. This is a 40% reduction in the limit derived from previous H_0 estimates and one-third lower than can be achieved with extant CMB and BAO data. We also analyze the impact of smaller uncertainty on measurements of H_0 as may be anticipated in the near term, in combination with CMB data from the Planck mission, and BAO data from the SDSS/BOSS program. We demonstrate the possibility of a 5 sigma detection for a fiducial neutrino mass of 0.1eV or a 95% upper limit of 0.04eV for a fiducial of m_nu = 0eV. These constraints are about 50% better than those achieved without external constraint. We further investigate the impact on modeling where the dark-energy equation of state is constant but not necessarily -1, or where a non-flat universe is allowed. In these cases, the next-generation accuracies of Planck, BOSS, and 1% measurement of H_0 would all be required to obtain the limit m_nu < 0.05 - 0.06eV (95% C.L.) for the fiducial of m_nu = 0eV. The independence of systematics argues for pursuit of both BAO and H_0 measurements.Comment: 22 pages, 6 figures, 12 table

    Effects of Short Range Correlations on Ca Isotopes

    Get PDF
    The effect of Short Range Correlations (SRC) on Ca isotopes is studied using a simple phenomenological model. Theoretical expressions for the charge (proton) form factors, densities and moments of Ca nuclei are derived. The role of SRC in reproducing the empirical data for the charge density differences is examined. Their influence on the depletion of the nuclear Fermi surface is studied and the fractional occupation probabilities of the shell model orbits of Ca nuclei are calculated. The variation of SRC as function of the mass number is also discussed.Comment: 11 pages (RevTex), 6 Postscript figures available upon request at [email protected] Physical Review C in prin

    Effect of a sweeping conductive wire on electrons stored in the Penning trap between the KATRIN spectrometers

    Full text link
    The KATRIN experiment is going to search for the mass of the electron antineutrino down to 0.2 eV/c^2. In order to reach this sensitivity the background rate has to be understood and minimised to 0.01 counts per second. One of the background sources is the unavoidable Penning trap for electrons due to the combination of the electric and magnetic fields between the pre- and the main spectrometer at KATRIN. In this article we will show that by sweeping a conducting wire periodically through such a particle trap stored particles can be removed, an ongoing discharge in the trap can be stopped, and the count rate measured with a detector looking at the trap is reduced.Comment: Final version published in EPJ A, 14 pages, 19 figures (21 files

    Neutrinoless double-beta decay and seesaw mechanism

    Full text link
    From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino mass mechanism. Within this notion, for the inverted neutrino-mass hierarchy we derive allowed ranges of half-lives of the neutrinoless double-beta decay for nuclei of experimental interest with different sets of nuclear matrix elements. The present-day results of the calculation of the neutrinoless double-beta decay nuclear matrix elements are briefly discussed. We argue that if neutrinoless double-beta decay will be observed in future experiments sensitive to the effective Majorana mass in the inverted mass hierarchy region, a comparison of the derived ranges with measured half-lives will allow us to probe the standard seesaw mechanism assuming that future cosmological data will establish the sum of neutrino masses to be about 0.2 eV.Comment: Some changes in sections I, II, IV, and V; two new figures; additional reference
    corecore