45 research outputs found
Thermalization of an impurity cloud in a Bose-Einstein condensate
We study the thermalization dynamics of an impurity cloud inside a
Bose-Einstein condensate at finite temperature, introducing a suitable
Boltzmann equation. Some values of the temperature and of the initial impurity
energy are considered. We find that, below the Landau critical velocity, the
macroscopic population of the initial impurity state reduces its depletion
rate. For sufficiently high velocities the opposite effect occurs. For
appropriate parameters the collisions cool the condensate. The maximum cooling
per impurity atom is obtained with multiple collisions.Comment: 4 pages 6 figure
On the transverse mode of an atom laser
The transverse mode of an atom laser beam that is outcoupled from a
Bose-Einstein condensate is investigated and is found to be strongly determined
by the mean--field interaction of the laser beam with the condensate. Since for
repulsive interactions the geometry of the coupling scheme resembles an
interferometer in momentum space, the beam is found show filamentation.
Observation of this effect would prove the transverse coherence of an atom
laser beam.Comment: 4 pages, 4 figure
Quantum carpet interferometry for trapped atomic Bose-Einstein condensates
We propose an ``interferometric'' scheme for Bose-Einstein condensates using
near-field diffraction. The scheme is based on the phenomenon of intermode
traces or quantum carpets; we show how it may be used in the detection of weak
forces.Comment: 4 figures. Submitted to Phys. Rev.
Momentum-Transfer to and Elementary-Excitations of a Bose-Einstein Condensate by a Time-Dependent Optical Potential
We present results of calculations on Bose-Einstein condensed Rb atoms
subjected to a moving standing-wave light-potential of the form . We calculate the mean-field dynamics (the order
paramter) of the condensate and determine the resulting condensate momentum in
the direction, , where is the peak optical
potential strength and is the pulse duration. Although the local density
approximation for the Bogoliubov excitation spectral distribution is a good
approximation for very low optical intensities, long pulse duration and
sufficiently large values of the wavevector of the light-potential, for
small , short duration pulses, or for not-so-low intensities, the local
density perturbative description of the excitation spectrum breaks down badly,
as shown by our results.Comment: 8 pages, 7 figure
Action principle formulation for motion of extended bodies in General Relativity
We present an action principle formulation for the study of motion of an
extended body in General Relativity in the limit of weak gravitational field.
This gives the classical equations of motion for multipole moments of arbitrary
order coupling to the gravitational field. In particular, a new force due to
the octupole moment is obtained. The action also yields the gravitationally
induced phase shifts in quantum interference experiments due to the coupling of
all multipole moments.Comment: Revised version derives Octupole moment force. Some clarifications
and a reference added. To appear in Phys. Rev.
Testing quantum correlations in a confined atomic cloud by scattering fast atoms
We suggest measuring one-particle density matrix of a trapped ultracold
atomic cloud by scattering fast atoms in a pure momentum state off the cloud.
The lowest-order probability of the inelastic process, resulting in a pair of
outcoming fast atoms for each incoming one, turns out to be given by a Fourier
transform of the density matrix. Accordingly, important information about
quantum correlations can be deduced directly from the differential scattering
cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR
Raman coupler for a trapped two-component quantum-degenerate Fermi gas
We investigate theoretically the Raman coupling between two internal states
of a trapped low-density quantum-degenerate Fermi gas. In general, the trap
frequencies associated with the two internal states can be different, leading
to the onset of collapses and revivals in the population difference of the two
internal states. This behavior can be changed drastically by two-body
collisions. In particular, we show that under appropriate conditions they can
suppress the dephasing leading to the collapse of the population difference,
and restore almost full Rabi oscillations between the two internal states.
These results are compared and contrasted to those for a quantum-degenerate
bosonic gas.Comment: 7 pages incl. 7 PostScript figures (.eps), LaTeX using RevTeX4,
submitted to Phys. Rev. A, modified versio
Logarithmic two-loop corrections to the Lamb shift in hydrogen
Higher order logarithmic corrections to the
hydrogen Lamb shift are calculated. The results obtained show the two-loop
contribution has a very peculiar behavior, and significantly alter the
theoretical predictions for low lying S-states.Comment: 14 pages, including 2 figures, submitted to Phys. Rev. A, updated
with minor change
Higher-order mutual coherence of optical and matter waves
We use an operational approach to discuss ways to measure the higher-order
cross-correlations between optical and matter-wave fields. We pay particular
attention to the fact that atomic fields actually consist of composite
particles that can easily be separated into their basic constituents by a
detection process such as photoionization. In the case of bosonic fields, that
we specifically consider here, this leads to the appearance in the detection
signal of exchange contributions due to both the composite bosonic field and
its individual fermionic constituents. We also show how time-gated counting
schemes allow to isolate specific contributions to the signal, in particular
involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure
Modulated Amplitude Waves in Bose-Einstein Condensates
We analyze spatio-temporal structures in the Gross-Pitaevskii equation to
study the dynamics of quasi-one-dimensional Bose-Einstein condensates (BECs)
with mean-field interactions. A coherent structure ansatz yields a
parametrically forced nonlinear oscillator, to which we apply Lindstedt's
method and multiple-scale perturbation theory to determine the dependence of
the intensity of periodic orbits (``modulated amplitude waves'') on their wave
number. We explore BEC band structure in detail using Hamiltonian perturbation
theory and supporting numerical simulations.Comment: 5 pages, 4 figs, revtex, final form of paper, to appear in PRE
(forgot to include \bibliography command in last update, so this is a
correction of that; the bibliography is hence present again