14 research outputs found

    The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice

    Get PDF
    Prostate cancer (PCa) is the most common type of cancer and the second leading cause of cancer-related death in men. Despite extensive research, the molecular mechanisms underlying PCa initiation and progression remain unclear, and there is increasing need of better biomarkers that can distinguish indolent from aggressive and life-threatening disease. With the advent of advanced genomic technologies in the last decade, it became apparent that the human genome encodes tens of thousands non-protein-coding RNAs (ncRNAs) with yet to be discovered function. It is clear now that the majority of ncRNAs exhibit highly specific expression patterns restricted to certain tissues and organs or developmental stages and that the expression of many ncRNAs is altered in disease and cancer, including cancer of the prostate. Such ncRNAs can serve as important biomarkers for PCa diagnosis, prognosis, or prediction of therapy response. In this review, we give an overview of the different types of ncRNAs and their function, describe ncRNAs relevant for the diagnosis and prognosis of PCa, and present emerging new aspects of ncRNA research that may contribute to the future utilization of ncRNAs as clinically useful therapeutic targets

    VIRMA-dependent N6-methyladenosine modifications regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in prostate cancer

    Get PDF
    RNA methylation at position N6 in adenosine (m6A) and its associated methyltransferase complex (MTC) are involved in tumorigenesis. We aimed to explore m6A biological function for long non-coding RNAs (lncRNAs) in prostate cancer (PCa) and its clinical significance. m6A and MTC levels in PCa cells were characterized by ELISA and western blot. Putative m6A-regulated lncRNAs were identified and validated by lncRNA profiler qPCR array and bioinformatics analysis, followed by m6A/RNA co-immunoprecipitation. Impact of m6A depletion on RNA stability was assessed by Actinomycin D assay. The association of m6A-levels with PCa prognosis was examined in clinical samples. Higher m6A-levels and VIRMA overexpression were detected in metastatic castration-resistant PCa (mCRPC) cells (p < 0.05). VIRMA knockdown in PC-3 cells significantly decreased m6A-levels (p = 0.0317), attenuated malignant phenotype and suppressed the expression of oncogenic lncRNAs CCAT1 and CCAT2 (p < 0.00001). VIRMA depletion and m6A reduction decreased the stability and abundance of CCAT1/2 transcripts. Higher expression of VIRMA, CCAT1, and CCAT2 as a group variable was an independent predictor of poor prognosis (HR = 9.083, CI95% 1.911–43.183, p = 0.006). VIRMA is a critical factor sustaining m6A-levels in PCa cells. VIRMA downregulation attenuates the aggressive phenotype of PCa by overall reduction of m6A-levels decreasing stability and abundance of oncogenic lncRNAs

    Transcription profiling of Aspergillus niger grown in media containg different pectic substrates to study the pectinolytic system

    No full text
    To study the induction of the genes encoding known and putative enzymes from the pectinolytic system of A. niger, the transcriptional profiles of 58 selected known or putative pectinolytic genes were monitored by microarray experiments. For this purpose, A. niger was cultivated on the complex substrates, sugar beet pectin and polygalacturonic acid as primary carbon sources. Galacturonic acid, rhamnose and xylose were used to assess the effects on gene expression caused by simple well-defined carbon sources, representing the most abundant sugar residues present in the backbone of pectin. Fructose, as a strong repressor of the expression of genes that are under carbon catabolite regulation, and sorbitol, as a non-inducing sugar-like alcohol, which does not affect the carbon catabolite regulation mechanisms were selected as control substrates. Mycelia of A. niger were pregrown for 18 h on 2% fructose, transferred to medium containing the different pectic and control substrates, and sampled at four time points during 24 h of incubation

    Transcription profiling of Aspergillus niger grown in media containg different pectic substrates to study the pectinolytic system

    No full text
    To study the induction of the genes encoding known and putative enzymes from the pectinolytic system of A. niger, the transcriptional profiles of 58 selected known or putative pectinolytic genes were monitored by microarray experiments. For this purpose, A. niger was cultivated on the complex substrates, sugar beet pectin and polygalacturonic acid as primary carbon sources. Galacturonic acid, rhamnose and xylose were used to assess the effects on gene expression caused by simple well-defined carbon sources, representing the most abundant sugar residues present in the backbone of pectin. Fructose, as a strong repressor of the expression of genes that are under carbon catabolite regulation, and sorbitol, as a non-inducing sugar-like alcohol, which does not affect the carbon catabolite regulation mechanisms were selected as control substrates. Mycelia of A. niger were pregrown for 18 h on 2% fructose, transferred to medium containing the different pectic and control substrates, and sampled at four time points during 24 h of incubation

    Transcription profiling of Aspergillus niger grown in media containg different pectic substrates to study the pectinolytic system

    No full text
    To study the induction of the genes encoding known and putative enzymes from the pectinolytic system of A. niger, the transcriptional profiles of 58 selected known or putative pectinolytic genes were monitored by microarray experiments. For this purpose, A. niger was cultivated on the complex substrates, sugar beet pectin and polygalacturonic acid as primary carbon sources. Galacturonic acid, rhamnose and xylose were used to assess the effects on gene expression caused by simple well-defined carbon sources, representing the most abundant sugar residues present in the backbone of pectin. Fructose, as a strong repressor of the expression of genes that are under carbon catabolite regulation, and sorbitol, as a non-inducing sugar-like alcohol, which does not affect the carbon catabolite regulation mechanisms were selected as control substrates. Mycelia of A. niger were pregrown for 18 h on 2% fructose, transferred to medium containing the different pectic and control substrates, and sampled at four time points during 24 h of incubation

    An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation

    No full text
    Transcriptome analysis of Aspergillus niger transfer cultures grown on galacturonic acid media identified a highly correlating cluster of four strongly induced hypothetical genes linked with a subset set of genes encoding pectin degrading enzymes. Three of the encoded hypothetical proteins now designated GAAA to GAAC are directly involved in further galacturonic acid catabolism. Functional and biochemical analysis revealed that GAAA is a novel d-galacturonic acid reductase. Two non-allelic Aspergillus nidulans strains unable to utilize galacturonic acid are mutated in orthologs of gaaA and gaaB, respectively. The A. niger gaaA and gaaC genes share a common promoter region. This feature appears to be strictly conserved in the genomes of plant cell wall degrading fungi from subphylum Pezizomycotina. Combined with the presence of homologs of the gaaB gene in the same set of fungi, these strongly suggest that a common d-galacturonic acid utilization pathway is operative in these specie

    Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics

    No full text
    The saprobic fungus Aspergillus niger is an efficient producer of a suite of extracellular enzymes involved in carbohydrate modification and degradation. Genome mining has resulted in the prediction of at least 39 genes encoding enzymes involved in the depolymerisation of the backbone of pectin. Additional genes,encoding enzymatic activities required for the degradation of the arabinan and arabinogalactan sidechains were predicted as well. DNA microarray analysis was used to study the condition-dependent expression of these genes, and to generate insights in possible synergistic interactions between the individual members of the pectin degrading enzyme network. For this purpose, A. niger was grown on sugarbeet pectin and on galacturonic acid, rhamnose and xylose, the main monomeric sugar constituents of pectin. An analysis of the corresponding transcriptomes revealed expression of 46 genes encoding pectinolytic enzymes. Their transcriptional profiles are discussed in detail and a cascade model of pectin degradation is propose

    Carboxy-terminal extension effects on crystal formation and insecticidal properties of colorado potato beetle-active Bacillus thuringiensis d-endotoxins

    No full text
    Many Bacillus thuringiensis crystal proteins, particularly those active against lepidopteran insects, have carboxy-terminal extensions that mediate bipyramidal crystal formation. These crystals are only soluble at high (>10.0) pH in reducing conditions such as generally found in the lepidopteran midgut. Most of the Colorado potato beetle (CPB)-active toxins lack such an extension, yet some toxins with a carboxy-terminal extension have cryptic activity against this insect, revealed only after in vitro solubilization. Crystal formation, morphology, protein content, and activity against CPB were compared for two sets of proteins, the Cry1-hybrid SN19 and Cry3Aa, both with and without a carboxy-terminal extension. Cry3Aa, with or without extension, formed flat square or rectangular crystals. SN19 (with extension) and its derivative without extension formed irregular inclusion bodies. All Cry3Aa and SN19 crystals and inclusion bodies were almost equally active before and after in vitro presolubilization and could be solubilized in diluted CPB midgut extract. In contrast, bipyramidal crystals of Cry1Ba were insoluble under these conditions. Our results suggest that bipyramidal crystal formation typical for proteins with a carboxy-terminal extension may preclude activity against CPB, but that interfering with this crystal formation can increase the activity

    The role of OncoSnoRNAs and Ribosomal RNA 2’-O-methylation in Cancer

    Get PDF
    Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2ʹ-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.SCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore