10 research outputs found

    Pressure Studies on a High-TcT_c Superconductor Pseudogap and Critical Temperatures

    Full text link
    We report simultaneous hydrostatic pressure studies on the critical temperature TcT_c and on the pseudogap temperature TT^* performed through resistivity measurements on an optimally doped high-TcT_c oxide Hg0.82Re0.18Ba2Ca2Cu3O8+δHg_{0.82}Re_{0.18}Ba_2Ca_2Cu_3O_{8+\delta}. The resistivity is measured as function of the temperature for several different applied pressure below 1GPa. We find that both TcT_c and TT^* increases linearly with the pressure. This result demonstrate that the well known intrinsic pressure effect on TcT_c is also present at TT^* and both temperatures are originated by the same superconducting mechanism.Comment: 4 pages and 2 figures in eps, final versio

    Structural and Magnetic Instabilities of La2x_{2-x}Srx_xCaCu2_2O6_6

    Get PDF
    A neutron scattering study of nonsuperconducting La2x_{2-x}Srx_xCaCu2_2O6_6 (x=0 and 0.2), a bilayer copper oxide without CuO chains, has revealed an unexpected tetragonal-to-orthorhombic transition with a doping dependent transition temperature. The predominant structural modification below the transition is an in-plane shift of the apical oxygen. In the doped sample, the orthorhombic superstructure is strongly disordered, and a glassy state involving both magnetic and structural degrees of freedom develops at low temperature. The spin correlations are commensurate.Comment: published versio

    Theory of the Diamagnetism Above the Critical Temperature for Cuprates

    Full text link
    Recently experiments on high critical temperature superconductors has shown that the doping levels and the superconducting gap are usually not uniform properties but strongly dependent on their positions inside a given sample. Local superconducting regions develop at the pseudogap temperature (TT^*) and upon cooling, grow continuously. As one of the consequences a large diamagnetic signal above the critical temperature (TcT_c) has been measured by different groups. Here we apply a critical-state model for the magnetic response to the local superconducting domains between TT^* and TcT_c and show that the resulting diamagnetic signal is in agreement with the experimental results.Comment: published versio

    Pinning of stripes by local structural distortions in cuprate high-Tc superconductors

    Full text link
    We study the spin-density wave (stripe) instability in lattices with mixed low-temperature orthorhombic (LTO) and low-temperature tetragonal (LTT) crystal symmetry. Within an explicit mean-field model it is shown how local LTT regions act as pinning centers for static stripe formation. We calculate the modulations in the local density of states near these local stripe regions and find that mainly the coherence peaks and the van Hove singularity (VHS) are spatially modulated. Lastly, we use the real-space approach to simulate recent tunneling data in the overdoped regime where the VHS has been detected by utilizing local normal state regions.Comment: Conference proceedings for Stripes1

    A Theory for High-TcT_c Superconductors Considering Inhomogeneous Charge Distribution

    Full text link
    We propose a general theory for the critical TcT_c and pseudogap TT^* temperature dependence on the doping concentration for high-TcT_c oxides, taking into account the charge inhomogeneities in the CuO2CuO_2 planes. The well measured experimental inhomogeneous charge density in a given compound is assumed to produce a spatial distribution of local ρ(r)\rho(r). These differences in the local charge concentration is assumed to yield insulator and metallic regions, possibly in a stripe morphology. In the metallic region, the inhomogeneous charge density yields also spatial distributions of superconducting critical temperatures Tc(r)T_c(r) and zero temperature gap Δ0(r)\Delta_0(r). For a given sample, the measured onset of vanishing gap temperature is identified as the pseudogap temperature, that is, TT^*, which is the maximum of all Tc(r)T_c(r). Below TT^*, due to the distribution of Tc(r)T_c(r)'s, there are some superconducting regions surrounded by insulator or metallic medium. The transition to a superconducting state corresponds to the percolation threshold among the superconducting regions with different Tc(r)T_c(r)'s. To model the charge inhomogeneities we use a double branched Poisson-Gaussian distribution. To make definite calculations and compare with the experimental results, we derive phase diagrams for the BSCO, LSCO and YBCO families, with a mean field theory for superconductivity using an extended Hubbard Hamiltonian. We show also that this novel approach provides new insights on several experimental features of high-TcT_c oxides.Comment: 7 pages, 5 eps figures, corrected typo

    Upper critical field Hc2H_{c2} calculations for the high critical temperature superconductors considering inhomogeneities

    Full text link
    We perform calculations to obtain the Hc2H_{c2} curve of high temperature superconductors (HTSC). We consider explicitly the fact that the HTSC possess intrinsic inhomogeneities by taking into account a non uniform charge density ρ(r)\rho(r). The transition to a coherent superconducting phase at a critical temperature TcT_c corresponds to a percolation threshold among different superconducting regions, each one characterized by a given Tc(ρ(r))T_c(\rho(r)). Within this model we calculate the upper critical field Hc2H_{c2} by means of an average linearized Ginzburg-Landau (GL) equation to take into account the distribution of local superconducting temperatures Tc(ρ(r))T_c(\rho(r)). This approach explains some of the anomalies associated with Hc2H_{c2} and why several properties like the Meissner and Nernst effects are detected at temperatures much higher than TcT_c.Comment: Latex text, add reference

    Study of the negative thermal expansion of cuprite-type structures by means of temperature-dependent pair distribution function analysis : Preliminary results

    No full text
    Copper (I) and silver (I) oxides crystallize with the same structure, and both show a wide range of negative thermal expansion (NTE): Cu2O contracts with temperature up to about 200 K and then expands, while Ag2O has a NTE up to its decomposition temperature at about 450 K. Here we report a careful temperature-dependent pair distribution function (PDF) analysis that showed that copper oxide, at about 200 K, exhibits geometric distortions of the tetrahedral units, probably related to a change in the solid angle of the polyhedra. Silver oxide, on the other hand, showed the same distortions even at the lowest temperature measured (10 K): structural refinements of the PDF confirmed the presence of local distortions (below 10 \uc5) at all temperatures

    Transport Properties

    No full text
    corecore