16 research outputs found

    Reionization: Characteristic Scales, Topology and Observability

    Full text link
    Recently the numerical simulations of the process of reionization of the universe at z>6 have made a qualitative leap forward, reaching sufficient sizes and dynamic range to determine the characteristic scales of this process. This allowed making the first realistic predictions for a variety of observational signatures. We discuss recent results from large-scale radiative transfer and structure formation simulations on the observability of high-redshift Ly-alpha sources. We also briefly discuss the dependence of the characteristic scales and topology of the ionized and neutral patches on the reionization parameters.Comment: 4 pages, 5 figures (4 in color), to appear in Astronomy and Space Science special issue "Space Astronomy: The UV window to the Universe", proceedings of 1st NUVA Conference ``Space Astronomy: The UV window to the Universe'' in El Escorial (Spain

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    Towards an understanding of long gamma-ray burst environments through circumstellar medium population synthesis predictions

    No full text
    International audienceThe temporal and spectral evolution of gamma-ray burst (GRB) afterglows can be used to infer the density and density profile of the medium through which the shock is propagating. In long-duration (core-collapse) GRBs, the circumstellar medium (CSM) is expected to resemble a wind-blown bubble, with a termination shock separating the stellar wind and the interstellar medium (ISM). A long standing problem is that flat density profiles, indicative of the ISM, are often found at lower radii than expected for a massive star progenitor. Furthermore, the presence of both wind-like environments at high radii and ISM-like environments at low radii remains a mystery. In this paper, we perform a 'CSM population synthesis' with long GRB progenitor stellar evolution models. Analytic results for the evolution of wind blown bubbles are adjusted through comparison with a grid of 2D hydrodynamical simulations. Predictions for the emission radii, ratio of ISM to wind-like environments, wind and ISM densities are compared with the largest sample of afterglow-derived parameters yet compiled, which we make available for the community. We find that high ISM densities around 1000/cm3 best reproduce observations. If long GRBs instead occur in typical ISM densities of approximately 1/cm3, then the discrepancy between theory and observations is shown to persist at a population level. We discuss possible explanations for the origin of variety in long GRB afterglows, and for the overall trend of CSM modelling to over-predict the termination shock radius

    LATE TIME MULTI-WAVELENGTH OBSERVATIONS OF SWIFT J1644+5734:A LUMINOUS OPTICAL/IR BUMP AND QUIESCENT X-RAY EMISSION

    Get PDF
    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t−70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L_X ~ 5 × 10^(42) erg s^(−1) and are marginally inconsistent with a continuing decay of t^(−5/3), similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M_(BH) = 3 × 10^6 M_⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30–50 days, with a peak magnitude (corrected for host galaxy extinction) of M_R ~ −22 to −23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares
    corecore