74 research outputs found
Novel diabetes gene discovery through comprehensive characterization and integrative analysis of longitudinal gene expression changes
Type 2 diabetes is a complex, systemic disease affected by both genetic and environmental factors. Previous research has identified genetic variants associated with type 2 diabetes risk; however, gene regulatory changes underlying progression to metabolic dysfunction are still largely unknown. We investigated RNA expression changes that occur during diabetes progression using a two-stage approach. In our discovery stage, we compared changes in gene expression using two longitudinally collected blood samples from subjects whose fasting blood glucose transitioned to a level consistent with type 2 diabetes diagnosis between the time points against those who did not with a novel analytical network approach. Our network methodology identified 17 networks, one of which was significantly associated with transition status. This 822-gene network harbors many genes novel to the type 2 diabetes literature but is also significantly enriched for genes previously associated with type 2 diabetes. In the validation stage, we queried associations of genetically determined expression with diabetes-related traits in a large biobank with linked electronic health records. We observed a significant enrichment of genes in our identified network whose genetically determined expression is associated with type 2 diabetes and other metabolic traits and validated 31 genes that are not near previously reported type 2 diabetes loci. Finally, we provide additional functional support, which suggests that the genes in this network are regulated by enhancers that operate in human pancreatic islet cells. We present an innovative and systematic approach that identified and validated key gene expression changes associated with type 2 diabetes transition status and demonstrated their translational relevance in a large clinical resource
The association of AGTR2 polymorphisms with preeclampsia and uterine artery bilateral notching is modulated by maternal BMI
On behalf of the SCOPE consortiumIntroductionThis study aimed to determine the association of AGTR1 and AGTR2 polymorphisms with preeclampsia and whether these are affected by environmental factors and fetal sex.MethodsOverall 3234 healthy nulliparous women, their partners and babies were recruited prospectively to the SCOPE study in Adelaide and Auckland. Data analyses were confined to 2121 Caucasian parent-infant trios, among whom 123 had preeclamptic pregnancies. 1185 uncomplicated pregnancies served as controls. DNA was extracted from buffy coats and genotyped by utilizing the Sequenom MassARRAY system. Doppler sonography on the uterine arteries was performed at 20 weeks' gestation.ResultsFour polymorphisms in AGTR1 and AGTR2 genes, including AGTR1 A1166C, AGTR2 C4599A, AGTR2 A1675G and AGTR2 T1134C, were selected and significant associations were predominately observed for AGTR2 C4599A. When the cohort was stratified by maternal BMI, in women with BMI ≥ 25 kg/m(2), the AGTR2 C4599A AA genotype in mothers and neonates was associated with an increased risk for preeclampsia compared with the CC genotype [adjusted OR 2.1 (95% CI 1.0-4.2) and adjusted OR 3.0 (95% CI 1.4-6.4), respectively]. In the same subset of women, paternal AGTR2 C4599A A allele was associated with an increased risk for preeclampsia and uterine artery bilateral notching at 20 weeks' gestation compared with the C allele [adjusted OR 1.9 (95% CI 1.1-3.3) and adjusted OR 2.1 (95% CI 1.3-3.4), respectively].ConclusionAGTR2 C4599A in mothers, fathers and babies was associated with preeclampsia and this association was only apparent in pregnancies in which the women had a BMI ≥ 25 kg/m(2), suggesting a gene-environment interaction.A. Zhou, G.A. Dekker, E.R. Lumbers, S.Y. Lee, S.D. Thompson, L.M.E. McCowan, C.T. Robert
A multi-population phenome-wide association study of genetically-predicted height in the Million Veteran Program
Background Height has been associated with many clinical traits but whether such associations are causal versus secondary to confounding remains unclear in many cases. To systematically examine this question, we performed a Mendelian Randomization-Phenome-wide association study (MR-PheWAS) using clinical and genetic data from a national healthcare system biobank. Methods and findings Analyses were performed using data from the US Veterans Affairs (VA) Million Veteran Program in non-Hispanic White (EA, n = 222,300) and non-Hispanic Black (AA, n = 58,151) adults in the US. We estimated height genetic risk based on 3290 height-associated variants from a recent European-ancestry genome-wide meta-analysis. We compared associations of measured and genetically-predicted height with phenome-wide traits derived from the VA electronic health record, adjusting for age, sex, and genetic principal components. We found 345 clinical traits associated with measured height in EA and an additional 17 in AA. Of these, 127 were associated with genetically-predicted height at phenome-wide significance in EA and 2 in AA. These associations were largely independent from body mass index. We confirmed several previously described MR associations between height and cardiovascular disease traits such as hypertension, hyperlipidemia, coronary heart disease (CHD), and atrial fibrillation, and further uncovered MR associations with venous circulatory disorders and peripheral neuropathy in the presence and absence of diabetes. As a number of traits associated with genetically-predicted height frequently co-occur with CHD, we evaluated effect modification by CHD status of genetically-predicted height associations with risk factors for and complications of CHD. We found modification of effects of MR associations by CHD status for atrial fibrillation/flutter but not for hypertension, hyperlipidemia, or venous circulatory disorders. Conclusions We conclude that height may be an unrecognized but biologically plausible risk factor for several common conditions in adults. However, more studies are needed to reliably exclude horizontal pleiotropy as a driving force behind at least some of the MR associations observed in this study
Accounting for International War: The State of the Discipline
In studies of war it is important to observe that the processes leading to so frequent an event as conflict are not necessarily those that lead to so infrequent an event as war. Also, many models fail to recognize that a phenomenon irregularly distributed in time and space, such as war, cannot be explained on the basis of relatively invariant phenomena. Much research on periodicity in the occurrence of war has yielded little result, suggesting that the direction should now be to focus on such variables as diffusion and contagion. Structural variables, such as bipolarity, show contradictory results with some clear inter-century differences. Bipolarity, some results suggest, might have different effects on different social entities. A considerable number of studies analysing dyadic variables show a clear connection between equal capabilities among contending nations and escalation of conflict into war. Finally, research into national attributes often points to strength and geographical location as important variables. In general, the article concludes, there is room for modest optimism, as research into the question of war is no longer moving in non-cumulative circles. Systematic research is producing results and there is even a discernible tendency of convergence, in spite of a great diversity in theoretical orientations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69148/2/10.1177_002234338101800101.pd
Exigência de proteÃna e composição da carcaça de galos reprodutores de 27 a 61 semanas de idade
Rare coding variants in RCN3 are associated with blood pressure
Background: While large genome-wide association studies have identified nearly one thousand loci associated with variation in blood pressure, rare variant identification is still a challenge. In family-based cohorts, genome-wide linkage scans have been successful in identifying rare genetic variants for blood pressure. This study aims to identify low frequency and rare genetic variants within previously reported linkage regions on chromosomes 1 and 19 in African American families from the Trans-Omics for Precision Medicine (TOPMed) program. Genetic association analyses weighted by linkage evidence were completed with whole genome sequencing data within and across TOPMed ancestral groups consisting of 60,388 individuals of European, African, East Asian, Hispanic, and Samoan ancestries. Results: Associations of low frequency and rare variants in RCN3 and multiple other genes were observed for blood pressure traits in TOPMed samples. The association of low frequency and rare coding variants in RCN3 was further replicated in UK Biobank samples (N = 403,522), and reached genome-wide significance for diastolic blood pressure (p = 2.01 × 10− 7). Conclusions: Low frequency and rare variants in RCN3 contributes blood pressure variation. This study demonstrates that focusing association analyses in linkage regions greatly reduces multiple-testing burden and improves power to identify novel rare variants associated with blood pressure traits
Large-scale genome-wide association study of coronary artery disease in genetically diverse populations
We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD
Rare genetic variants explain missing heritability in smoking
Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this ‘missing heritability’. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability (hSNP2) was estimated from 0.13 to 0.28 (s.e., 0.10–0.13) in European ancestries, with 35–74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5–4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability (hped2, 0.18–0.34). In the African ancestry samples, hSNP2 was estimated from 0.03 to 0.33 (s.e., 0.09–0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking
Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWASs for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally diverse individuals (European, African, Asian, and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole-genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n = 109,122 individuals. We identified 59 sentinel variants (p < 5 × 10−9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated that the independent signals colocalized with cell-type-specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated that our TL polygenic trait scores (PTSs) were associated with an increased risk of cancer-related phenotypes
Gene-educational attainment interactions in a multi-population genome-wide meta-analysis identify novel lipid loci
Introduction: Educational attainment, widely used in epidemiologic studies as a surrogate for socioeconomic status, is a predictor of cardiovascular health outcomes.Methods: A two-stage genome-wide meta-analysis of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), and triglyceride (TG) levels was performed while accounting for gene-educational attainment interactions in up to 226,315 individuals from five population groups. We considered two educational attainment variables: "Some College" (yes/no, for any education beyond high school) and "Graduated College" (yes/no, for completing a 4-year college degree). Genome-wide significant (p < 5 x 10(-8)) and suggestive (p < 1 x 10(-6)) variants were identified in Stage 1 (in up to 108,784 individuals) through genome-wide analysis, and those variants were followed up in Stage 2 studies (in up to 117,531 individuals).Results: In combined analysis of Stages 1 and 2, we identified 18 novel lipid loci (nine for LDL, seven for HDL, and two for TG) by two degree-of-freedom (2 DF) joint tests of main and interaction effects. Four loci showed significant interaction with educational attainment. Two loci were significant only in cross-population analyses. Several loci include genes with known or suggested roles in adipose (FOXP1, MBOAT4, SKP2, STIM1, STX4), brain (BRI3, FILIP1, FOXP1, LINC00290, LMTK2, MBOAT4, MYO6, SENP6, SRGAP3, STIM1, TMEM167A, TMEM30A), and liver (BRI3, FOXP1) biology, highlighting the potential importance of brain-adipose-liver communication in the regulation of lipid metabolism. An investigation of the potential druggability of genes in identified loci resulted in five gene targets shown to interact with drugs approved by the Food and Drug Administration, including genes with roles in adipose and brain tissue.Discussion: Genome-wide interaction analysis of educational attainment identified novel lipid loci not previously detected by analyses limited to main genetic effects.Pathophysiology, epidemiology and therapy of agein
- …