40 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The chemistry of stalked barnacle adhesive (Lepas anatifera)

    No full text
    The results of the first chemical analysis of the adhesive of Lepas anatifera, a stalked barnacle, are presented. A variety of elements were identified in scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) of the adhesive, including Na, Mg, Ca, Cl, S, Al, Si, K and Fe; however, protein–metal interactions were not detected in Raman spectra of the adhesive. Elemental signatures from SEM-EDS of L. anatifera adhesive glands were less varied. Phosphorous was mostly absent in adhesive samples; supporting previous studies showing that phosphoserines do not play a significant role in adult barnacle adhesion. Disulfide bridges arising from Cys dimers were also investigated; Raman analysis showed weak evidence for S-S bonds in L. anatifera. In addition, there was no calcium carbonate signal in the attenuated total reflectance Fourier transform infrared spectra of L. anatifera adhesive, unlike several previous studies in other barnacle species. Significant differences were observed between the Raman spectra of L. anatifera and Balanus crenatus; these and a range of Raman peaks in the L. anatifera adhesive are discussed. Polysaccharide was detected in L. anatifera adhesive but the significance of this awaits further experiments. The results demonstrate some of the diversity within barnacle species in the chemistry of their adhesives
    corecore