5 research outputs found

    Mechanical and nanomechanical properties of MWCNT/PP nanocomposite

    Get PDF
    The mechanical and nanomechanical properties of multi-walled carbon nanotube-reinforced polypropylene (MWCNT/PP) nanocomposite were investigated through tension tests (conducted on 2 wt% and 5 wt% specimens) and nanoindentation tests (conducted on 2 wt% specimens). In addition, the structural properties and topography of the nanocomposite were characterized by means of scanning electron microscopy (SEM) and Scanning Probe Microscopy (SPM), respectively. The results from the tension tests reveal an enhancement and a considerable scatter in the Young’s modulus and maximum stress of the MWCNT/PP nanocomposite for both MWCNT content. For the specimens with mechanical properties lower than the average values, the SEM and SPM images revealed poor dispersion and formation of large agglomerates. The hardness (as resistance to applied load) and Young’s modulus were mapped at 300 nm of displacement, for a grid of 70 ´ 70 μm2. Through projection, the resistance is clearly divided into 3 regions, namely the PP matrix, the interphase (region close to/between MWCNTs) and the regions of the MWCNT agglomerates. The resistance deviates from low values (few MPas) to 1.8 GPa. The present experimental study provides all necessary data for the model creation and validation of the MWCNT/PP nanocomposite

    Mechanical and nanomechanical properties of MWCNT/PP nanocomposite

    Get PDF
    The mechanical and nanomechanical properties of multi-walled carbon nanotube-reinforced polypropylene (MWCNT/PP) nanocomposite were investigated through tension tests (conducted on 2 wt% and 5 wt% specimens) and nanoindentation tests (conducted on 2 wt% specimens). In addition, the structural properties and topography of the nanocomposite were characterized by means of scanning electron microscopy (SEM) and Scanning Probe Microscopy (SPM), respectively. The results from the tension tests reveal an enhancement and a considerable scatter in the Youngs modulus and maximum stress of the MWCNT/PP nanocomposite for both MWCNT content. For the specimens with mechanical properties lower than the average values, the SEM and SPM images revealed poor dispersion and formation of large agglomerates. The hardness (as resistance to applied load) and Young蒒s modulus were mapped at 300 nm of displacement, for a grid of 70 ( 70 �m2. Through projection, the resistance is clearly divided into 3 regions, namely the PP matrix, the interphase (region close to/between MWCNTs) and the regions of the MWCNT agglomerates. The resistance deviates from low values (few MPa) to 1.8 GPa. The present experimental study provides all necessary data for the model creation and validation of the MWCNT/PP nanocomposite

    Nanomechanical properties of plasma treated polylactic acid

    No full text
    In this work, a radio frequency discharged plasma generated in air atmosphere by pressure has been used to modify polylactic acid (PLA) surface. The results were evaluated through nanoindentation testing. Contact angle measurements revealed a gradual transition to a more hydrophilic state with increasing polarity after plasma treatment, while partial recovery to their untreated state during 10 day storage in air was evidenced. The results were evaluated through nanoindentation testing. All PLA samples exhibited an almost hard-like surface area where hardness and elastic modulus are enhanced. The activity of the plasma creates a higher cross-linking density within the material in the surface region. For higher displacements, both H and E tend to reach pristine PLA's values. Hardness values reveal surface hardening due to plasma treatment except for 180 s etching time, where hardness is slightly decreased possibly due to surface deformation. The change of H/E slope reveals the strengthening of oxygen plasma etched PLA with 180 s of etching time with increasing displacement.Scopu

    Mechanical behaviour of a poydimethylsiloxane elastomer after outdoor weathering in two different weathering locations

    No full text
    The degradation of maxillofacial prosthetic elastomers that occur during physical weathering is usually responsible for the replacement of the prosthesis. In this study the mechanical behaviour of a polydimethylsiloxane (PDMS) elastomer was investigated, after 1 year outdoor weathering in two different weathering locations in Greece (Thessaloniki, Athens). The hypothesis investigated was that irradiation time did not affect the measured properties. Specimens (Elastomer 42) were prepared according to manufacturer's instructions and exposed to solar radiation for 1 year. Compression, tensile and nanoindentation tests were performed before and after the exposure. Compression and tensile data were also subjected to analysis of variance (ANOVA) and Tukey Post hoc tests at a level of α = .05. These properties were selected due to their clinical significance for fabrication and maintenance of a facial prosthesis. According to statistical analysis all the measured properties changed significantly after outdoor weathering. More specifically, most of the properties presented significant changes after six months of weathering. The observed changes also depended on the weathering locations. The hypothesis investigated was rejected. Material A became harder and the observed differences in the mechanical behaviour resulted from photo-degradation and hydrolysis that might occur due to weathering. The study also provides new information about maxillofacial prosthetics serviceability obtained from nanoindentation tests. © 2011 Elsevier Ltd. All rights reserved

    Mechanical enhancement of cytocompatible 3d scaffolds, consisting of hydroxyapatite nanocrystals and natural biomolecules, through physical cross-linking

    No full text
    Bioinspired scaffolds mimicking natural bone-tissue properties holds great promise in tissue engineering applications towards bone regeneration. Within this work, a way to reinforce mechanical behavior of bioinspired bone scaffolds was examined by applying a physical crosslinking method. Scaffolds consisted of hydroxyapatite nanocrystals, biomimetically synthesized in the presence of collagen and l-arginine. Scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), microcomputed tomography, and nanoindentation. Results revealed scaffolds with bone-like nanostructure and composition, thus an inherent enhanced cytocompatibility. Evaluation of porosity proved the development of interconnected porous network with bimodal pore size distribution. Mechanical reinforcement was achieved through physical crosslinking with riboflavin irradiation, and nanoindentation tests indicated that within the experimental conditions of 45% humidity and 37◦C, photo-crosslinking led to an increase in the scaffold’s mechanical properties. Elastic modulus and hardness were augmented, and specifically elastic modulus values were doubled, approaching equivalent values of trabecular bone. Cytocompatibility of the scaffolds was assessed using MG63 human osteosarcoma cells. Cell viability was evaluated by double staining and MTT assay, while attachment and morphology were investigated by SEM. The results suggested that scaffolds provided a cell friendly environment with high levels of viability, thus supporting cell attachment, spreading and proliferation. © 2020 by the authors. Licensee MDPI, Basel, Switzerland
    corecore