455 research outputs found

    Magnetic Phases of Electron-Doped Manganites

    Full text link
    We study the anisotropic magnetic structures exhibited by electron-doped manganites using a model which incorporates the double-exchange between orbital ly degenerate ege_{g} electrons and the super-exchange between t2gt_{2g} electrons with realistic values of the Hund's coupling(JHJ_H), the super-exchange coupling(JAFJ_{AF}), and the bandwidth(WW). We look at the relative stabilities of the G, C and A type antiferromagnetic ph ases. In particular we find that the G-phase is stable for low electron doping as seen in experiments. We find good agreement with the experimentally observed magnetic phase diagrams of electron-doped manganites (x>0.5x > 0.5) such as Nd1x_{1-x}Srx_{x}MnO3_{3}, Pr1x_{1-x}Srx_{x}MnO3_{3}, and Sm1x_{1-x}Cax_{x}MnO3_{3}. We can also explain the experimentally observed orbital structures of the C a nd A phases. We also extend our calculation for electron-doped bilayer manganites of the form R22x_{2-2x}A1+2x_{1+2x}Mn2_2O7_7 and predict that the C-phase will be absent in t hese systems due to their reduced dimensionality.Comment: 7 .ps files included. To appear in Phys. Rev. B (Feb 2001

    Optical Investigations of Charge Gap in Orbital Ordered La1/2Sr3/2MnO4

    Full text link
    Temperature and polarization dependent electronic structure of La1/2Sr3/2MnO4 were investigated by optical conductivity analyses. With decreasing temperature, for E//ab, a broad mid-infrared (MIR) peak of La1/2Sr3/2MnO4 becomes narrower and moves to the higher frequency, while that of Nd1/2Sr3/2MnO4 nearly temperature independent. We showed that the MIR peak in La1/2Sr3/2MnO4 originates from orbital ordering associated with CE-type magnetic ordering and that the Jahn-Teller distortion has a significant influence on the width and the position of the MIR peak.Comment: 10 pages, 4 figure

    Theory of spin wave excitations of metallic A-type antiferromagnetic manganites

    Full text link
    The spin dynamic of the metallic A-type antiferromagnetic manganites is studied. An effective nearest-neighbour Heisenberg spin wave dispersion is derived from the double exchange model taking into account the superexchange interaction between the core spins. The result of inelastic neutron scattering experiment on Nd0.45Sr0.55MnO3{Nd}_{0.45}{Sr}_{0.55}{Mn} {O}_{3} is qualitatively reproduced. Comparing theory with experimental data two main parameters of the model: nearest-neighbour electron transfer amplitude and superexchange coupling between the core spins are estimated.Comment: to appear in Phys. Rev.

    Circumstellar interaction in supernovae in dense environments - an observational perspective

    Full text link
    In a supernova explosion, the ejecta interacting with the surrounding circumstellar medium (CSM) give rise to variety of radiation. Since CSM is created from the mass lost from the progenitor star, it carries footprints of the late time evolution of the star. This is one of the unique ways to get a handle on the nature of the progenitor star system. Here, I will focus mainly on the supernovae (SNe) exploding in dense environments, a.k.a. Type IIn SNe. Radio and X-ray emission from this class of SNe have revealed important modifications in their radiation properties, due to the presence of high density CSM. Forward shock dominance of the X-ray emission, internal free-free absorption of the radio emission, episodic or non-steady mass loss rate, asymmetry in the explosion seem to be common properties of this class of SNe.Comment: Fixed minor typos. 31 pages, 9 figures, accepted for publication in Space Science Reviews. Chapter in International Space Science Institute (ISSI) Book on "Supernovae" to be published in Space Science Reviews by Springe

    Phase diagrams of La1xCaxMnO3\rm La_{1-x}Ca_xMnO_3 in Double Exchange Model with added antiferromagnetic and Jahn-Teller interaction

    Full text link
    The phase diagram of the multivalent manganites La1xCaxMnO3\rm La_{1-x}Ca_xMnO_3, in space of temperature and doping xx, is a challenge for the theoretical physics. It is an important test for the model used to study these compounds and the method of calculation. To obtain theoretically this diagram for x<0.5x<0.5, we consider the two-band Double Exchange Model for manganites with added Jahn-Teller coupling and antiferromagnetic Heisenberg term. In order to calculate Curie and N\'{e}el temperatures we derive an effective Heisenberg model for a vector which describes the local orientation of the total magnetization of the system. The exchange constants of this model are different for different space directions and depend on the density of ege_g electrons, antiferromagnetic constants and the Jahn-Teller energy. To reproduce the well known phase transitions from A-type antiferromagnetism to ferromagnetism at low xx and C-type antiferromagnetism to G-type antiferromagnetism at large xx, we argue that the antiferromagnetic exchange constants should depend on the lattice direction. We show that ferromagnetic to A-type antiferromagnetic transition results from the Jahn-Teller distortion. Accounting adequately for the magnon-magnon interaction, Curie and N\'{e}el temperatures are calculated. The results are in very good agreement with the experiment and provide values for the model parameters, which best describe the behavior of the critical temperature for x<0.5x<0.5.Comment: 13 pages, 5 figure

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Racial Differences in Physical and Mental Health

    Full text link
    This article examines the extent to which racial differences in socio-economic status (SES), social class and acute and chronic indicators of perceived discrimination, as well as general measures of stress can account for black-white differences in self-reported measures of physical and mental health. The observed racial differences in health were markedly reduced when adjusted for education and especially income. However, both perceived discrimination and more traditional measures of stress are related to health and play an incremental role in accounting for differences between the races in health status. These findings underscore the need for research efforts to identify the complex ways in which economic and non-economic forms of discrimination relate to each other and combine with socio-economic position and other risk factors and resources to affect health.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67159/2/10.1177_135910539700200305.pd

    Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides

    Full text link
    Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller coupling is derived under full polarization of spins with two-dimensional anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital degrees of freedom are investigated by using the quantum Monte Carlo method. In undoped states, it is crucial to consider both the Coulomb interaction and the Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales among charge, orbital-lattice and spin degrees of freedom in experiments. Our numerical results quantitatively reproduce the charge gap amplitude as well as the stabilization energy and the amplitude of the cooperative Jahn-Teller distortion in undoped compounds. Upon doping of carriers, in the absence of the Jahn-Teller distortion, critical enhancement of both charge compressibility and orbital correlation length is found with decreasing doping concentration. These are discussed as origins of strong incoherence in charge dynamics. With the Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller distortion and instability to phase separation are obtained and favorably compared with experiments. These provide a possible way to understand the complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B, replaced version; two figures are replaced by Fig.17 with minor changes in the tex

    Muon anomalous magnetic moment in the standard model with two Higgs doublets

    Get PDF
    The muon anomalous magnetic moment is investigated in the standard model with two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all the effective Yukawa couplings become complex. As a consequence of the non-zero phase in the couplings, the one loop contribution from the neutral scalar bosons could be positive and negative relying on the CP phases. The interference between one and two loop diagrams can be constructive in a large parameter space of CP-phases. This will result in a significant contribution to muon anomalous magnetic moment even in the flavor conserving process with a heavy neutral scalar boson (mhm_h \sim 200 GeV) once the effective muon Yukawa coupling is large (ξμ50|\xi_\mu|\sim 50). In general, the one loop contributions from lepton flavor changing scalar interactions become more important. In particular, when all contributions are positive in a reasonable parameter space of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation can be easily explained even for a heavy scalar boson with a relative small Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54 (2001) 11501
    corecore