22 research outputs found

    Electric And Magnetic Fields Applied To Peripheral Nerve Regeneration [campos Elétricos E Magnéticos Aplicados à Regeneração Nervosa Periférica]

    No full text
    Introduction. Electromagnetic fields (EMF) may be applied to the human body with rehabilitative goals. Injury to peripheral nerve tissue differs from the lesion in the central nervous system because it presents a great potential for axonal regeneration. physiological effects are associated to exposure to EMFs, such as analgesia, vasodilation, muscle contraction and, especially, tissue regeneration. Objective. The paper aim is present and explore new applications of EMF in the rehabilitation of peripheral nerve tissue. Method. Literature search was undertaken on the bases Springer, ScienceDirect, PubMed, Google Scholar, CAPES periodicals portal between the years 1972 to 2009, using the terms: Magnetic fields; Nerve regeneration; Peripheral nerve; Axonal regeneration; Electrical regeneration; Peripheral nerve regeneration. Results. The selected parameters for EMFs vary widely: for electric fields, it is used pulse width (on time) from 65 μμs up to 100 μμs, frequency range up to 250 Hz and amplitude varying from 0,1 V/m to 4 V/m. For magnetic fields, intensity varies between 4.35 μT and 8 T and frequency, between 0 and 54 GHz. Conclusion. results related to axonal elongation and guidance, protein increment, genetic changes and reduction of the total time of regeneration. The application produces no physical damage and few transient adverse effects when safe magnitudes are yielded.192314328Markov, M.S., Therapeutic application of static magnetic fields (2007) Environmentalist, 27, pp. 457-463. , http://dx.doi.org/10.1007/s10669-007-9072-1Oschman, J.L., (2000) Energy Medicine: The Scientific Basis, p. 275. , Philadelphia: Churchill LivingstoneNorthrop, R.B., (2004) Analysis and application of analog electronic circuits to biomedical instrumentation, p. 542. , Boca Raton, Fla: CRCBarnes, F.S., Greenebaum, B., (2006) Handbook of biological effects of electromagnetic fields, p. 433. , 3a. ed. Boca Raton, USA: CRC PressAgne, J.E., (2005) Eletroterapia: Teoria e prática, p. 336. , Santa Maria: Oriumda Luz, A.M.R., Álvares, B.A., (2000) Curso de física, p. 432. , 5a. ed. São Paulo: ScipioneOschman, J.L., (2003) Energy Medicine in Therapeutics and Human Performance, p. 360. , Philadelphia: Butterworth-Heinemannde Araujo, D.B., Carneiro, A.A.O., Moraes, E.R., Baffa, O., Biomagnetismo: Uma Nova Interface entre a Física e as Ciências Biológicas (1999) Ciência Hoje, 26, pp. 24-30Schmidt, R., Dudel, J., Jänig, W., Zimmermann, M., (1979) Neurofisiologia, p. 372. , Silva JFA. São Paulo: EPUVerkhratsky, A., Krishtal, O.A., Petersen, O.H., From Galvani to patch clamp: The development of electrophysiology (2006) Pflugers Arch-Eur J Physiol, 453, pp. 233-247Banks, A.N., Srygley, R.B., Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae) (2003) Ethology, 109, pp. 835-846. , http://dx.doi.org/10.1046/j.0179-1613.2003.00927.xLevin, M., Bioelectromagneticsin Morphogenesis (2003) Bioelectromagnetics, 24, pp. 295-315. , http://dx.doi.org/10.1002/bem.10104Markov, M.S., Pulsed electromagnetic field therapy history, state of the art and future (2007) Environmentalist, 27, pp. 465-475. , http://dx.doi.org/10.1007/s10669-007-9128-2Butler, D.S., (2003) Mobilização do sistema nervoso, p. 270. , Frare J. Barueri: ManoleMachado, A.B.M., (2006) Neuroanatomia Funcional, p. 363. , 2a. ed. São Paulo: AtheneuCosenza, R.M., (2001) Fundamentos de Neuroanatomia, p. 143. , 2a. ed. Rio de Janeiro: Guanabara/KooganCampbell, W.W., (2007) DeJong-O Exame Neurológico, p. 563. , 6a. ed. Mundim FD. Rio de Janeiro Guanabara/KooganAlberts, B., Bray, D., Johnson, A., Lewis, J., (1999) Fundamentos da biologia celular: Uma introdução à biologia molecular da célula, p. 757. , Termignoni C. Porto Alegre: Artes Médicas SulMarzzoco, A., Torres, B.B., (1999) Bioquímica básica, p. 232. , 2a. ed. Rio de Janeiro Guanabara/KooganVieira, E.C., Gazzinelli, G., Mares-Guia, M., (1999) Bioquímica celular e biologia molecular, p. 375. , 2a. ed. São Paulo: AtheneuOkuno, E., Caldas, I.L., Chow, C., (1986) Física para ciências biológicas e biomédicas, p. 490. , São Paulo HarbraBear, M.F., Connors, B.W., Paradiso, M.A., (2002) Neurociências: Desvendando o sistema nervoso, p. 855. , 2a. ed. Quillfeldt JA. Porto Alegre: ArtmedJunqueira, L.C., Carneiro, J., (1999) Histologia básica, p. 450. , 9a. ed. Rio de Janeiro: Guanabara KooganJunqueira, L.C., Carneiro, J., (2000) Biologia celular e molecular, p. 339. , Rio de Janeiro: Guanabara KooganLent, R., (2001) Cem bilhões de neurônios: Conceitos fundamentais de neurociência, p. 698. , São Paulo AtheneuAl-Majed, A.A., Tam, S.L., Gordon, T., Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons (2004) Cell Mol Neurobiol, 24, pp. 379-402. , http://dx.doi.org/10.1023/B:CEMN.0000022770.66463.f7Kitchen, S., Bazin, S., (2003) Eletroterapia: Prática baseada em evidências, p. 360. , 2a. ed. Barueri: ManoleKitchen, S., Bazin, S., (1998) Eletroterapia de Clayton, p. 350. , 10a. ed. Nascimento FGd. São Paulo: ManoleRodríguez, F.J., Valero-Cabre, A., Navarro, X., Regeneration and functional recovery following peripheral nerve injury (2004) Drug Discov Today Dis Models, 1, pp. 177-185. , http://dx.doi.org/10.1016/j.ddmod.2004.09.008Campbell, W.W., Evaluation and management of peripheral nerve injury (2008) Clin Neurophysiol, 119, pp. 1951-1965. , http://dx.doi.org/10.1016/j.clinph.2008.03.018Stokes, M., (2000) Neurologia para fisioterapeutas, p. 402. , Oppido T. Colômbia: PremierGrandPré, T., Nakamura, F., Vartanian, T., Strittmatter, S.M., Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein (2000) Nature, 403, pp. 439-444. , http://dx.doi.org/10.1038/35000226Al-Majed, A.A., Brushart, T.M., Gordon, T., Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons (2000) Eur J Neurosci, 12, pp. 4381-4390. , http://dx.doi.org/10.1046/j.1460-9568.2000.01341.x, http://dx.doi.org/10.1111/j.1460-9568.2000.01341.xHeneine, I.F., (2000) Biofísica básica, p. 391. , São Paulo: AtheneuKotwal, A., Schmidt, C.E., Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials (2001) Biomaterials, 22, pp. 1055-1064. , http://dx.doi.org/10.1016/S0142-9612(00)00344-6Glass, J.D., Wallerian degeneration as a window to peripheral neuropathy (2004) J Neurol Sci, 220, pp. 123-124. , http://dx.doi.org/10.1016/j.jns.2004.03.010Desouches, C., Alluin, O., Mutaftschiev, N., Dousset, E., Magalon, G., Boucraut, J., La réparation nerveuse périphérique: 30 siècles de recherche (2005) Rev Neurol (Paris), 161, pp. 1045-1059Cambier, J., Masson, M., Dehen, H., (1999) Manual de neurologia, p. 590. , Drummond JP. Rio de Janeiro MEDSIFerreira, A.S., (2006) Lesões Nervosas Periféricas (diagnóstico e Tratamento), p. 254. , São Paulo: SantosRaji, A.R., Bowden, R.E., Effects of high-peak pulsed electromagnetic field on the degeneration and regeneration of the common peroneal nerve in rats (1983) J Bone Joint Surg, 65, pp. 478-492Enoka, R.M., (2000) Bases neuromecânicas da cinesiologia, p. 450. , Bankoff ADP. São Paulo: ManoleErhart, E.A., (1972) Neuroanatomia, p. 420. , 4a. ed. São Paulo: AtheneuSong, J.W., Yang, L.J., Russell, S.M., Peripheral nerve: What's new in basic science laboratories (2009) Neurosurg Clin N Am, 20, pp. 121-131. , http://dx.doi.org/10.1016/j.nec.2008.07.026Brodal, A., (1984) Anatomia neurológica com correlações clínicas, p. 902. , 3a. ed. Maris MS. São Paulo: RocaJohnson, E.O., Zoubos, A.B., Soucacos, P.N., Regeneration and repair of peripheral nerves (2005) Int J Care Injured, 36 (4 S), pp. 24-29Sisken, B.F., Tweheus, P.M.A., Markov, M., Influence of static magnetic fields on nerve regeneration in vitro (2007) Environmentalist, 27, pp. 477-481. , http://dx.doi.org/10.1007/s10669-007-9117-5Kandel, E.R., Jessell, T.M., Schwartz, J.H., (1991) Principles of neural science, p. 1138. , 3a. ed. New York: ElsevierTrumble, T.E., Archibald, S., Allan, C.H., Bioengineering for nerve repair in the future (2004) Journal of the American Society for Surgery of the Hand, 4, pp. 134-142. , http://dx.doi.org/10.1016/j.jassh.2004.06.005Tonge, D.A., Golding, J.P., Regeneration and repair of the peripheral nervous system (1993) Seminars in the Neurosciences, 5, pp. 385-390. , http://dx.doi.org/10.1016/S1044-5765(05)80010-7Ide, C., Peripheral nerve regeneration (1996) Neurosci Res, 25, pp. 101-121. , http://dx.doi.org/10.1016/0168-0102(96)01042-5, http://dx.doi.org/10.1016/S0168-0102(96)01042-5Vivó, M., Puigdemasa, A., Casals, L., Asensio, E., Udina, E., Navarro, X., Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair (2008) Exp Neurol, 211, pp. 180-193. , http://dx.doi.org/10.1016/j.expneurol.2008.01.020Kolb, B., Whishaw, I.Q., (2002) Neurociência do comportamento, p. 664. , Piemonte ME. Barueri: ManoleCohen, H., (2001) Neurociências para Fisioterapeutas, p. 519. , 2a. ed. Coelho SMT. Barueri: ManoleNelson, R.M., Hayes, K.W., Currier, D.P., (2003) Eletroterapia Clínica, p. 600. , 3a. ed. Castro C. Barueri: ManoleGarcia, E.A.C., (2002) Biofísica, p. 388. , São Paulo: SarvierCailliet, R., (1999) Dor: Mecanismos e Tratamento, p. 312. , Settineri WMF. Porto Alegre Artes Médicas SulRobinson, A.J., Snyder-Mackler, L., (2001) Eletrofisiologia clínica: Eletroterapia e teste eletrofisiológico, p. 426. , 2a. ed. Silva AdMPeMdGFd. Porto Alegre ArtemedBrasileiro, G., (1998) Bogliolo Patologia geral básica, p. 312. , (filho), 2 ed. Rio de Janeiro: Guanabara KooganMonnier, J.P., Tubiana, J.M., (1999) Manual de diagnóstico radiológico, p. 478. , Lederman HM. Rio de Janeiro MEDSILow, J., Reed, A., (2001) Eletroterapia explicada: Princípios e prática, p. 484. , Ribeiro LB. Barueri ManoleSantos, E.C., (1995) As Microondas Na Fisioterapia (Uma Realidade Atual), p. 79. , São Paulo LoviseDurán, J.E.R., (2003) Biofísica: Fundamentos e aplicações, p. 318. , São Paulo Prentice HallEvangelista, R.A., (2006) Eletroestimulação: O exercício do futuro, p. 207. , são Paulo: PhorteCalçada, C.S., Sampaio, J.L., (1998) Física clássica, p. 584. , São Paulo: AtualLianza, S., (2003) Estimulação Elétrica Funcional-FES e Reabilitação, p. 97. , São Paulo AtheneuValone, T.F., Bioelectromagnetic Healing, its History and a Rationale for its Use (2003) Proceedings of the Whole Person Healing Conference, pp. 1-17. , Bethesda: Iuniverse IncFeedar, J.A., Kloth, L.C., Gentzkow, G.D., Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation (1991) Phys Ther, 71, pp. 639-649Machado, C.M., (2002) Eletrotermoterapia prática, p. 325. , 3a. ed. São Paulo PasncastWheeler, L.A., Clinical Laboratory Instrumentation (1998) Medical Instrumentation: Application and design, pp. 505-507. , In: Webster JG, ed, 3a. ed. New York John Wiley and SonsPatel, N., Poo, M.M., Orientation of neurite growth by extracellular electric fields (1982) J Neurosci, 2, pp. 483-496Song, B., Zhao, M., Forrester, J., McCaig, C., Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo (2004) Journal of Cell Science, 117, pp. 4681-4690. , http://dx.doi.org/10.1242/jcs.01341Becker, R.O., Selden, G., (1985) The Body Electric: Electromagnetism and the Foundation of Life, p. 364. , New York: HarpperMercóla, J.M., Kirsch, D.L., The basis for microcurrent electrical therapy in conventional medical practice (1995) Journal of Advancement in medicine, 8, pp. 107-120Borgens, R.B., Bohnert, D.M., The responses of mammalian spinal axons to an applied DC voltage gradient (1997) Exp Neurol, 145, pp. 376-389. , http://dx.doi.org/10.1006/exnr.1997.6499Aaron, R.K., Ciombor, D.M., Therapeutic effects of electromagnetic fields in the stimulation of connective tissue repair (1993) J Cell Biochem, 52, pp. 42-46. , http://dx.doi.org/10.1002/jcb.240520107Oschman, J.L., Charge transfer in the living matrix (2009) J Bodyw Mov Ther, 13, pp. 215-228. , http://dx.doi.org/10.1016/j.jbmt.2008.06.005Sears, F.W., Zemansky, M.W., (1979) Física Accioli JdL, p. 685. , Rio de Janeiro: Livros Técnicos e CientíficosKahn, J., (2000) Principles and practice of electrotherapy, p. 184. , 4a. ed. New York: Churchill LivingstoneWilson, D.H., Treatment of soft-tissue injuries by pulsed electrical energy (1972) Br Med J, 2, pp. 269-270. , http://dx.doi.org/10.1136/bmj.2.5808.269Kolosova, L.I., Akoev, G.N., Avelev, V.D., Riabchikova, O.V., Babu, K.S., Effect of low-intensity millimeter wave electromagnetic radiation on regeneration of the sciatic nerve in rats (1996) Bioelectromagnetics, 17, pp. 44-47. , http://dx.doi.org/10.1002/(SICI)1521-186X(1996)17:13.0.CO;2-6DiLorenzo, D.J., Bronzino, J.D., (2007) Neuroengineering, p. 408. , http://dx.doi.org/101201/9780849381850, Boca Raton, FL: CRC PressMacias, M.Y., Battocletti, J.H., Sutton, C.H., Pintar, F.A., Maiman, D.J., Directed and enhanced neurite growth with pulsed magnetic field stimulation (2000) Bioelectromagnetics, 21, pp. 272-286. , http://dx.doi.org/10.1002/(SICI)1521-186X(200005)21:43.3.CO;2-X, http://dx.doi.org/10.1002/(SICI)1521-186X(200005)21:43.0.CO;2-5Byers, J.M., Clark, K.F., Thompson, G.C., Effect of pulsed electromagnetic stimulation on facial nerve regeneration (1998) Arch Otolaryngol Head Neck Surg, 124, pp. 383-389Kolosova, L.I., Akoev, G.N., Ryabchikova, O.V., Avelev, V.D., Effect of low-intensity millimeter-range electromagnetic irradiation on the recovery of function in lesioned sciatic nerves in rats (1998) Neurosci Behav Physiol, 28, pp. 26-30. , http://dx.doi.org/10.1007/BF02461908Al-Majed, A.A., Neumann, C.M., Brushart, T.M., Gordon, T., Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration (2000) J Neurosci, 20, pp. 2602-2608McFarlane, E.H., Dawe, G.S., Marks, M., Campbell, I.C., Changes in neurite outgrowth but not in cell division induced by low EMF exposure: Influence of field strength and culture conditions on responses in rat PC12 pheochromocytoma cells (2000) Bioelectrochemistry, 52, pp. 23-28. , http://dx.doi.org/10.1016/S0302-4598(00)00078-7Brushart, T.M., Hoffman, P.N., Royall, R.M., Murinson, B.B., Witzel, C., Gordon, T., Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron (2002) J Neurosci, 22, pp. 6631-6638Eguchi, Y., Ogiue-Ikeda, M., Ueno, S., Control of orientation of rat Schwann cells using an 8-T static magnetic field (2003) Neurosci Lett, 351, pp. 130-132. , http://dx.doi.org/10.1016/S0304-3940(03)00719-5Naeser, M.A., Hahn, K.A.K., Lieberman, B.E., Branco, K.F., Carpal tunnel syndrome pain treated with low-level laser and microamperes transcutaneous electric nerve stimulation: A controlled study (2002) Arch Phys Med Rehabil, 83, pp. 978-988. , http://dx.doi.org/10.1053/apmr.2002.33096Mendonça, A.C., Barbieri, C.H., Mazzer, N., Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats (2003) J Neurosci Methods, 129, pp. 183-190. , http://dx.doi.org/10.1016/S0165-0270(03)00207-3de Pedro, J.A., Perez-Caballer, A.J., Dominguez, J., Collia, F., Blanco, J., Salvado, M., Pulsed electromagnetic fields induce peripheral nerve regeneration and endplate enzymatic changes (2005) Bioelectromagnetics, 26, pp. 20-27. , http://dx.doi.org/10.1002/bem.20049Richardson, R.T., Thompson, B., Moulton, S., Newbold, C., Lum, M.G., Cameron, A., The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons (2007) Biomaterials, 28, pp. 513-523. , http://dx.doi.org/10.1016/j.biomaterials.2006.09.008Geremia, N.M., Gordon, T., Brushart, T.M., Al-Majed, A.A., Verge, V.M.K., Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression (2007) Exp Neurol, 205, pp. 347-359. , http://dx.doi.org/10.1016/j.expneurol.2007.01.040Ahlborn, P., Schachner, M., Irintchev, A., One hour electrical stimulation accelerates functional recovery after femoral nerve repair (2007) Exp Neurol, 208, pp. 137-144. , http://dx.doi.org/10.1016/j.expneurol.2007.08.005Kim, S., Im, W.S., Kang, L., Lee, S.T., Chu, K., Kim, B.I., The application of magnets directs the orientation of neurite outgrowth in cultured human neuronal cells (2008) J Neurosci Methods, 174, pp. 91-96. , http://dx.doi.org/10.1016/j.jneumeth.2008.07.005Lu, M.C., Ho, C.Y., Hsu, S.F., Lee, H.C., Lin, J.H., Yao, C.H., Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve (2008) Neurorehabil Neural Repair, 22, pp. 367-373. , http://dx.doi.org/10.1177/1545968307313507Weintraub, M., Cole, S., A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome (2008) Pain Medicine, 9, pp. 493-504. , http://dx.doi.org/10.1111/j.1526-4637.2007.00324.xWood, M.D., Willits, R.K., Applied electric field enhances DRG neurite growth: Influence of stimulation media, surface coating and growth supplements (2009) J Neural Eng, p. 6. , http://dx.doi.org/10.1088/1741-2560/6/4/046003, In Pres

    Triaxial Mechanomyography Of The Biceps Brachii Muscle During Sustained Submaximal Isometric Contractions

    No full text
    The biceps brachii (BB) is a bi-articular muscle that acts in the elbow and shoulder joints. Mechanomyography (MMG) is a technique that uses accelerometers to monitor the muscle waves. The aim of this study is to model the behavior of BB MMG signals and elbow torque during sustained sub-maximal isometric contractions. Three MMG axes (Z, Y and X) and torque were recorded from BB during sustained elbow flexion at 70% of maximum voluntary contraction (MVC) and kept the longest time the volunteers could get. MMG and torque signals were analyzed in 3 different (Initial, Middle and Final) time windows (TW) with 1s duration specific to the protocol. Temporal parameters [Absolute mean, root mean square (RMS), number of zero-crossings, peak count, and absolute integral] were calculated for all signals and every TW. The ANOVA analysis showed that absolute mean, RMS and absolute integral parameters presented statistical difference only for X axis (accelerations in the proximal-distal direction) increasing amplitude with time. The Z axis (accelerations in the anterior-posterior direction) showed decrease of the zero-crossings in the first half of the test and had a second decrease between the Middle TW and the Final TW, but no difference was observed at any moment on X axis during this analysis. The unique parameter that presented statistical difference for all axis (Z, X, Y) and modulus among the three TW was number of peak counts and only X axis is not different between the Initial and Middle TWs. One possible hypothesis would be a tension increase in muscles that actuate on the scapula since the direction of the action force is parallel to the X axis. A purely spectral parameters analysis could help comprehending what does occur with MMG signal in sustained submaximal isometric contractions.25415021505Edman, K.A., Lou, F., Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres (1992) J Physiol, 457, pp. 655-673Curtin, N.A., Edman, K.A., Force-velocity relation for frog muscle fibres: Effects of moderate fatigue and of intracellular acidification (1994) J Physiol, 475, pp. 483-494Brozovich, F.V., Pollack, G.H., Muscle contraction generates discrete sound bursts (1983) Biophys J, 41, pp. 35-40Orizio, C., Perini, R., Veicsteinas, A., Muscular sound and force relationship during isometric contraction in man (1989) Eur J Appl Physiol, 58, pp. 528-533Orizio, C., Perini, R., Veicsteinas, A., Changes of muscular sound during sustained isometric contraction up to exhaustion (1989) J Appl Physiol, 66, pp. 1593-1598Shinohara, M., Kouzaki, M., Yoshihisa, T., Mechanomyogram from the different heads of the quadriceps muscle during incremental knee extension (1998) Eur J Appl Physiol, 78, pp. 289-295Zagar, T., Krizaj, D., Validation of an accelerometer for determination of muscle belly radial displacement (2005) Med Biol Eng Comput, 43, pp. 78-84Yoshitake, Y., Shinohara, M., Ue, H., Characteristics of surface mechanomyogram are dependent on development of fusion of motor units in humans (2002) J Appl Physiol, 93, pp. 1744-1752Goldenberg, M.S., Yack, H.J., Cerny, F.J., Acoustic myography as an indicator of force during sustained contractions of a small hand muscle (1991) J Appl Physiol, 70, pp. 87-91Dalton, P.A., Stokes, M.J., Frequency of acoustic myography during isometric contraction of fresh and fatigued muscle and during dynamic contractions (1993) Muscle & Nerve, 16, pp. 255-261Esposito, F., Orizio, C., Veicsteinas, A., Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men (1998) Eur J Appl Physiol, 78, pp. 494-501Kouzaki, M., Shinohara, M., Fukunaga, T., Non-uniform mechanical activity of quadriceps muscle during fatigue by repeated maximal voluntary contraction in humans (1999) Eur J Appl Physiol, 80, pp. 9-15Weir, J.P., Ayers, K.M., Lacefield, J.F., Mechanomyographic and electromyographic responses during fatigue in humans: Influence of muscle length (2000) Eur J Appl Physiol, 81, pp. 352-35

    Advances And Perspectives Of Mechanomyography

    No full text
    Introduction: The evaluation of muscular tissue condition can be accomplished with mechanomyography (MMG), a technique that registers intramuscular mechanical waves produced during a fi ber’s contraction and stretching that are sensed or interfaced on the skin surface. Objective: Considering the scope of MMG measurements and recent advances involving the technique, the goal of this paper is to discuss mechanomyography updates and discuss its applications and potential future applications. Methods: Forty-three MMG studies were published between the years of 1987 and 2013. Results: MMG sensors are developed with different technologies such as condenser microphones, accelerometers, laser-based instruments, etc. Experimental protocols that are described in scientifi c publications typically investigated the condition of the vastus lateralis muscle and used sensors built with accelerometers, third and fourth order Butterworth fi lters, 5-100Hz frequency bandpass, signal analysis using Root Mean Square (RMS) (temporal), Median Frequency (MDF) and Mean Power Frequency (MPF) (spectral) features, with epochs of 1 s. Conclusion: Mechanomyographic responses obtained in isometric contractions differ from those observed during dynamic contractions in both passive and functional electrical stimulation evoked movements. In the near future, MMG features applied to biofeedback closed-loop systems will help people with disabilities, such as spinal cord injury or limb amputation because they may improve both neural and myoelectric prosthetic control. Muscular tissue assessment is a new application area enabled by MMG; it can be useful in evaluating the muscular tonus in anesthetic blockade or in pathologies such as myotonic dystrophy, chronic obstructive pulmonary disease, and disorders including dysphagia, myalgia and spastic hypertonia. New research becomes necessary to improve the effi ciency of MMG systems and increase their application in rehabilitation, clinical and other health areas.304384401Al-Mulla, M.R., Sepulveda, F., Colley, M., A review of noninvasive techniques to detect and predict localised muscle fatigue (2011) Sensors, 11 (4), pp. 3545-3594. , http://dx.doi.org/10.3390/s110403545, PMid:22163810 PMCid:PMC3231314Al-Zahrani, E., Gunasekaran, C., Callaghan, M., Gaydecki, P., Benitez, D., Oldham, J., Within-day and between-days reliability of quadriceps isometric muscle fatigue using mechanomyography on healthy subjects (2009) Journal of Electromyography and Kinesiology, 19 (4), pp. 695-703. , http://dx.doi.org/10.1016/j.jelekin.2007.12.007, PMid:18294866Alves, N., Chau, T., Automatic detection of muscle activity from mechanomyogram signals: A comparison of amplitude and wavelet-based methods (2010) Physiological Measurement, 31 (4), pp. 461-476. , http://dx.doi.org/10.1088/0967-3334/31/4/001, PMid:20182001Alves, N., Chau, T., Stationarity distributions of mechanomyogram signals from isometric contractions of extrinsic hand muscles during functional grasping (2008) Journal of Electromyography and Kinesiology, 18 (3), pp. 509-515. , http://dx.doi.org/10.1016/j.jelekin.2006.11.010, June, PMid:17276085Armstrong, W.J., Wavelet-based intensity analysis of mechanomyographic signals during single-legged stance following fatigue (2011) Journal of Electromyography & Kinesiology, 21 (5), pp. 803-810. , http://dx.doi.org/10.1016/j.jelekin.2011.05.011, PMid: 21708471Armstrong, W.J., McGregor, S.J., Yaggie, J.A., Bailey, J.J., Johnson, S.M., Goin, A.M., Kelly, S.R., Reliability of mechanomyography and triaxial accelerometry in the assessment of balance (2010) Journal of Electromyography and Kinesiology, 20 (4), pp. 726-731. , http://dx.doi.org/10.1016/j.jelekin.2010.02.002, PMid:20227294Barry, D.T., Acoustic signals from frog skeletal muscle (1987) Biophysical Journal, 51 (5), pp. 769-773. , http://dx.doi.org/10.1016/S0006-3495(87)83403-3Barry, D.T., Geiringer, S.R., Ball, R.D., Acoustic myography: A noninvasive monitor of motor unit fatigue (1985) Muscle & Nerve, 8 (3), pp. 189-194. , http://dx.doi.org/10.1002/mus.880080303, PMid:4058463Beck, T.W., Defreitas, J.M., Stock, M.S., An examination of cross-talk among surface mechanomyographic signals from the superficial quadriceps femoris muscles during isometric muscle actions (2010) Human Movement Science, 29 (2), pp. 165-171. , http://dx.doi.org/10.1016/j.humov.2009.11.005, PMid:20334943Beck, T.W., Defreitas, J.M., Stock, M.S., Dillon, M.A., An examination of mechanomyographic signal stationarity during concentric isokinetic, eccentric isokinetic and isometric muscle actions (2010) Physiological Measurement, 31 (3), pp. 339-361. , http://dx.doi.org/10.1088/0967-3334/31/3/005, PMid:20130345Beck, T.W., Housh, T.J., Cramer, J.T., Weir, J.P., Johnson, G.O., Coburn, J.W., Malek, M.H., Mielke, M., Mechanomyographic amplitude and frequency responses during dynamic muscle actions: A comprehensive review (2005) Biomedical Engineering Online, 4 (1), p. 67. , http://dx.doi.org/10.1186/1475-925X-4-67, PMid:16364182 PMCid:PMC1343566Beck, T.W., Housh, T.J., Fry, A.C., Cramer, J.T., Weir, J.P., Schilling, B.K., Falvo, M.J., Moore, C.A., A wavelet-based analysis of surface mechanomyographic signals from the quadriceps femoris (2009) Muscle & Nerve, 39 (3), pp. 355-363. , http://dx.doi.org/10.1002/mus.21208, PMid:19208397Beck, T.W., Housh, T.J., Johnson, G.O., Cramer, J.T., Weir, J.P., Coburn, J.W., Malek, M.H., Does the frequency content of the surface mechanomyographic signal reflect motor unit firing rates? A brief review (2007) Journal of Electromyography and Kinesiology, 17 (1), pp. 1-13. , http://dx.doi.org/10.1016/j.jelekin.2005.12.002, PMid:16497517Beck, T.W., Von Tscharner, V., Housh, T.J., Cramer, J.T., Weir, J.P., Malek, M.H., Mielke, M., Time/frequency events of surface mechanomyographic signals resolved by nonlinearly scaled wavelets (2008) Biomedical Signal Processing and Control, 3 (3), pp. 255-266. , http://dx.doi.org/10.1016/j.bspc.2008.01.005Blangsted, A.K., Sjøgaard, G., Madeleine, P., Olsen, H.B., Søgaard, K., Voluntary low-force contraction elicits prolonged lowfrequency fatigue and changes in surface electromyography and mechanomyography (2005) Journal of Electromyography and Kinesiology, 15 (2), pp. 138-148. , http://dx.doi.org/10.1016/j.jelekin.2004.10.004, PMid:15664144Bohannon, R.W., Smith, M., Interrater reliability of a modified ashworth scale of muscle spasticity (1987) Physical Therapy, 67 (2), pp. 206-207. , PMid:3809245Brozovich, F.V., Pollack, G.H., Muscle contraction generates discrete sound bursts (1983) Biophysical Journal, 41 (1), pp. 35-40. , http://dx.doi.org/10.1016/S0006-3495(83)84403-8Cabral, L., Krueger, E., Nogueira-Neto, G.N., Nohama, P., Scheeren, E.M., Time lag between the onset of electrical stimulation and the muscular response (2013) XXIV Congress of the International Society of Biomechanics and XV Brazilian Congress of Biomechanics, pp. 1-2. , (extended abstract), 2013 Aug 4-9, Natal. Natal, BrazilCè, E., Rampichini, S., Agnello, L., Limonta, E., Veicsteinas, A., Esposito, F., Effects of temperature and fatigue on the electromechanical delay components (2013) Muscle & Nerve, 47 (4), pp. 566-576. , http://dx.doi.org/10.1002/mus.23627, PMid:23463680Cebrián, A.T., Uranga, L.S., Fernández, J., Guiral, J.G., Llorens, J., Prat, J.M., Campos, R.J., Evaluación de la actividad de los músculos inspiratorios mediante se-ales mecanomiográficas en pacientes con EPOC durante un protocolo de carga incremental (2010) XXVIII Congreso Anual De La Sociedad Espa-Ola De Ingeniería Biomédica, , 2010 Nov 24-26. Madrid. MadridCoburn, J.W., Housh, T.J., Cramer, J.T., Weir, J.P., Miller, J.M., Beck, T.W., Malek, M.H., Johnson, G.O., Mechanomyographic and electromyographic responses of the vastus medialis muscle during isometric and concentric muscle actions (2005) Journal of Strength and Conditioning Research, pp. 412-420. , PMid:15903384Cole, J.P., Madhavan, G., McLeod, K.J., Vibromyographic quantification of voluntary isometric contractile force in the brachioradialis (2006) 28Th IEEE EMBS Annual International Conference2006, pp. 1708-1710. , New York. New York, PMid:17946062Cools, R., Miyakawa, A., Sheridan, M., D’Esposito, M., Enhanced frontal function in Parkinson’s disease (2010) Brain, 133 (1), pp. 225-233. , http://dx.doi.org/10.1093/brain/awp301, PMid:19995871 PMCid:PMC2801327Daubechies, I., Orthonormal bases of compactly supported wavelets (1988) Communications on Pure and Applied Mathematics, 41 (7), pp. 909-996. , http://dx.doi.org/10.1002/cpa.3160410705Durling, A.E., (1969) An Introduction to Electrical Engineering, , London: MacmillanEbersole, K.T., Malek, D.M., Fatigue and the electromechanical efficiency of the vastus medialis and vastus lateralis muscles (2008) Journal of Athletic Training, 43 (2), pp. 152-156. , http://dx.doi.org/10.4085/1062-6050-43.2.152, PMid:18345339 PMCid:PMC2267324Englehart, K., Hudgins, B., A robust, real-time control scheme for multifunction myoelectric control (2003) IEEE Transactions on Biomedical Engineering, 50 (7), pp. 848-854. , http://dx.doi.org/10.1109/TBME.2003.813539, PMid:12848352Esposito, F., Limonta, E., Cè, E., Passive stretching effects on electromechanical delay and time course of recovery in human skeletal muscle: New insights from an electromyographic and mechanomyographic combined approach (2011) European Journal of Applied Physiology, 111 (3), pp. 485-495. , http://dx.doi.org/10.1007/s00421-010-1659-4, PMid:20886228Faller, L., Nogueira-Neto, G.N., Button, V., Nohama, P., Muscle fatigue assessment by mechanomyography during application of NMES protocol (2009) Revista Brasileira De Fisioterapia, 13 (5), pp. 422-429. , http://dx.doi.org/10.1590/S1413-35552009005000057Frangioni, J.V., Kwan-Gett, T.S., Dobrunz, L.E., McMahon, T.A., The mechanism of low-frequency sound production in muscle (1987) Biophysical Journal, 51 (5), pp. 775-783. , http://dx.doi.org/10.1016/S0006-3495(87)83404-5Fukano, N., Suzuki, T., Ishikawa, K., Mizutani, H., Saeki, S., Ogawa, S., A randomized trial to identify optimal precurarizing dose of rocuronium to avoid precurarization-induced neuromuscular block (2011) Journal of Anesthesia, 25 (2), pp. 200-204. , http://dx.doi.org/10.1007/s00540-010-1086-z, PMid:21225293Gordon, G., Holbourn, A.H., The sounds from single motor units in a contracting muscle (1948) The Journal of Physiology, 107 (4), pp. 456-464. , PMid:16991826 PMCid:PMC1392395Guo, J.Y., Zheng, Y.P., Kenney, L., Bowen, A., Howard, D., Canderle, J.J., A Comparative evaluation of sonomyography, electromyography, force, and wrist angle in a discrete tracking task (2011) Ultrasound in Medicine & Biology, 37 (6), pp. 884-891. , http://dx.doi.org/10.1016/j.ultrasmedbio.2011.03.008, PMid:21546151Hemmerling, T.M., Michaud, G., Trager, G., Deschamps, S., Babin, D., Donati, F., Phonomyography and mechanomyography can be used interchangeably to measure neuromuscular block at the adductor pollicis muscle (2004) Anesthesia & Analgesia, 98 (2), p. 377. , http://dx.doi.org/10.1213/01.ANE.0000096003.64059.97Herda, T.J., Ryan, E.D., Beck, T.W., Costa, P.B., Defreitas, J.M., Stout, J.R., Cramer, J.T., Reliability of mechanomyographic amplitude and mean power frequency during isometric step and ramp muscle actions (2008) Journal of Neuroscience Methods, 171 (1), pp. 104-109. , http://dx.doi.org/10.1016/j.jneumeth.2008.02.017, PMid:18405977Herroun, E.F., Yeo, G.F., Note on the sound accompanying the single contraction of skeletal muscle (1885) The Journal of Physiology, 6 (4-5), pp. 287-292. , PMid:16991417 PMCid:PMC1485010Hodgkin, A.L., Huxley, A.F., The dual effect of membrane potential on sodium conductance in the giant axon of Loligo (1952) The Journal of Physiology, 116 (4), pp. 497-506. , PMid:14946715 PMCid:PMC1392212Hsieh, T.H., Dhamne, S.C., Chen, J., Pascual-Leone, A., Jensen, F.E., Rotenberg, A., A new measure of cortical inhibition by mechanomyography and paired-pulse transcranial magnetic stimulation in unanesthetized rats (2012) Journal of Neurophysiology, 107 (3), pp. 966-972. , http://dx.doi.org/10.1152/jn.00690.2011, PMid:22013238 PMCid:PMC3289479Huang, C.Y., Wang, C.H., Hwang, I.S., Characterization of the mechanical and neural components of spastic hypertonia with modified H reflex (2006) Journal of Electromyography & Kinesiology, 16 (4), pp. 384-391. , http://dx.doi.org/10.1016/j.jelekin.2005.09.001, PMid:16253519Islam, M.A., Sundaraj, K., Ahmad, R.B., Ahamed, N.U., Mechanomyogram for Muscle function assessment: A review (2013) Plos ONE, 8 (3). , http://dx.doi.org/10.1371/journal.pone.0058902, PMid:23536834 PMCid:PMC3594217Islam, M.A., Sundaraj, K., Ahmad, R.B., Ahamed, N.U., Babu, M., Mechanomyography Sensor Development, Related Signal Processing and Applications: A Systematic Review (2013) IEEE Sensors Journal, 13 (7), pp. 2499-2516. , http://dx.doi.org/10.1109/JSEN.2013.2255982Johnson, M.A., Polgar, J., Weightman, D., Appleton, D., Data on the distribution of fibre types in thirty-six human muscles:: An autopsy study (1973) Journal of the Neurological Sciences, 18 (1), pp. 111-129. , http://dx.doi.org/10.1016/0022-510X(73)90023-3, JanKesar, T.M., Perumal, R., Jancosko, A., Reisman, D.S., Rudolph, K.S., Higginson, J.S., Binder-Macleod, S.A., Novel Patterns of Functional Electrical Stimulation Have an Immediate Effect on Dorsiflexor Muscle Function During Gait for People Poststroke (2010) Physical Therapy, 90 (1), pp. 55-66. , http://dx.doi.org/10.2522/ptj.20090140, PMid:19926681 PMCid:PMC2802826Krueger-Beck, E., Scheeren, E., Nogueira-Neto, G.N., Button, V., Nohama, P., Mechanomyographic Response during FES in Healthy and Paraplegic Subjects (2010) 32Nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 626-629. , August 31-September 4, 2010, Buenos Aires, ArgentinaKrueger-Beck, E., Scheeren, E., Nogueira-Neto, G.N., Button, V., Nohama, P., Optimal FES Parameters based on mechanomyographic efficiency index (2010) 32Nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1378-1381. , August 31-September 4, 2010, Buenos Aires, ArgentinaKrueger, E., Scheeren, E., Chu, G., Nogueira-Neto, G.N., Button, V., Mechanomyography analysis with 0.2 s and 1.0 s time delay after onset of contraction (2010) BIOSTEC 2010: 3Rd International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 296-299. , 2010 Jan 20-23Valence. ValenceKrueger, E., Scheeren, E., Lazzaretti, A.E., Nogueira-Neto, G.N., Button, V., Nohama, P., Cauchy wavelet-based mechanomyographic analysis for muscle contraction evoked by fes in a spinal cord injured person (2013) 10Th IASTED International Conference on Biomedical Engineering, pp. 237-242. , 2013 Feb 13-15, Innsbruck. Innsbruck, Austria, PMid:23746611Krueger, E., Scheeren, E., Nogueira-Neto, G.N., Nohama, P., Time-frequency muscle responses elicited by different FES modulating frequencies in paraplegics (2013) 18Th IFESS Annual Conference, pp. 249-252. , 2013, Donostia-San Sebastian. Donostia-San Sebastian, SpainKrueger, E., Scheeren, E., Nogueira-Neto, G.N., Button, V., Nohama, P., A New Approach to Assess the Spasticity in Hamstrings Muscles using Mechanomyography Antagonist Muscular Group (2012) 34Th Annual International Conference of the IEEE (EMBS), pp. 2060-2063. , 2012 Aug 28-Sept 1, San Diego. San Diego, CaliforniaKrueger, E., Scheeren, E., Nogueira-Neto, G.N., Neves, E.B., Button VLdSN, Nohama P. Influence of skinfold thickness in mechanomyography features (2012) World Congress on Medical Physics and Biomedical Engineering, pp. 2030-2033. , 2012, Beijing. Beijing, ChinaKrueger, E., Scheeren, E.M., Nogueira-Neto, G.N., Button, V., Nohama, P., FES Application with different off times in paraplegic subject during open chain movement: Case report (2011) Proceedings of the 5Th European Conference of the International Federation for Medical and Biological Engineering, pp. 765-768. , http://dx.doi.org/10.1007/978-3-642-23508-5_199, 2011 Sept 14-18, Budapest, Hungary. HungaryKrueger, E., Scheeren, E.M., Nogueira-Neto, G.N., Da Sn, B., Nohama, P., Correlation between mechanomyography features and passive movements in healthy and paraplegic subjects (2011) 33Rd Annual International Conference of the IEEE (EMBS), pp. 7242-7245. , 2011, Boston. Boston, MassachusettsLee, J., Steele, C.M., Chau, T., Classification of healthy and abnormal swallows based on accelerometry and nasal airflow signals (2011) Artificial Intelligence in Medicine, 52 (1), pp. 17-25. , http://dx.doi.org/10.1016/j.artmed.2011.03.002, PMid:21549579Lei, K.F., Cheng, S.-C., Lee, M.-Y., Lin, W.-Y., Measurement and estimation of muscle contraction strength using mechanomyography based on artificial neural network algorithm (2013) Biomedical Engineering: Applications, Basis and Communications, 25 (2), pp. 1-8. , http://dx.doi.org/10.4015/S1016237213500208Madeleine, P., Ge, H.-Y., Jaskólska, A., Farina, D., Jaskólski, A., Arendt-Nielsen, L., Spectral moments of mechanomyographic signals recorded with accelerometer and microphone during sustained fatiguing contractions (2006) Medical & Biological Engineering & Computing, 44 (4), pp. 290-297. , http://dx.doi.org/10.1007/s11517-006-0036-2, PMid:16937170Madeleine, P., Jørgensen, L., Søgaard, K., Arendt-Nielsen, L., Sjøgaard, G., Development of muscle fatigue as assessed by electromyography and mechanomyography during continuous and intermittent low-force contractions: Effects of the feedback mode (2002) European Journal of Applied Physiology, 87 (1), pp. 28-37. , http://dx.doi.org/10.1007/s00421-002-0578-4, PMid:12012073Malek, M.H., Coburn, J.W., York, R., Ng, J., Rana, S.R., Comparison of mechanomyographic sensors during incremental cycle ergometry for the quadriceps femoris (2010) Muscle & Nerve, 42 (3), pp. 394-400. , http://dx.doi.org/10.1002/mus.21686, PMid:20665508Marusiak, J., Jaskólska, A., Jarocka, E., Najwer, W., Kisiel-Sajewicz, K., Jaskólski, A., Electromyography and mechanomyography of elbow agonists and antagonists in Parkinson disease (2009) Muscle & Nerve, 40 (2), pp. 240-248. , http://dx.doi.org/10.1002/mus.21250, PMid:19472352McAndrew, D., Gorelick, M., Brown, J., Muscles within muscles: A mechanomyographic analysis of muscle segment contractile properties within human gluteus maximus (2006) Journal of Musculoskeletal Research, 10 (1), pp. 23-35. , http://dx.doi.org/10.1142/S0218957706001704Merletti, R., Lo Conte, L.R., Advances in processing of surface myoelectric signals: Part 1 (1995) Medical & Biological Engineering & Computing, 33 (3), pp. 362-372. , http://dx.doi.org/10.1007/BF02510518Merletti, R., Parker, P.A., Electromyography: Physiology, engineering, and noninvasive applications (2004) Piscataway, , http://dx.doi.org/10.1002/0471678384, NJ: Wiley-IEEE Press, PMCid:PMC2409903Mirbagheri, M.M., Settle, K., Harvey, R., Rymer, W.Z., Neuromuscular abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke (2007) Journal of Neurophysiology, 98 (2), p. 629. , http://dx.doi.org/10.1152/jn.00049.2007, PMid:17537910Nogueira-Neto, G., Scheeren, E., Krueger, E., Nohama, P., Button, V.L., The Influence of Window Length Analysis on the Time and Frequency Domain of Mechanomyographic and Electromyographic Signals of Submaximal Fatiguing Contractions (2013) Open Journal of Biophysics, 3, pp. 178-190. , http://dx.doi.org/10.4236/ojbiphy.2013.33021Nogueira-Neto, G.N., Müller, R.W., Salles, F.A., Nohama, P., Button, V., Mechanomyographic sensor: A triaxial accelerometry approach (2008) International Joint Conference on Biomedical Engineering Systems and Technology, pp. 176-179. , 2008, Funchal, Madeira, PortugalNolan, Y., Depaor, A., The mechanomyogram as a channel of communication and control for the disabled (2004) Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4928-4931. , 2004. San Francisco. San FranciscoOhta, Y., Shima, N., Yabe, K., In vivo behaviour of human muscle architecture and mechanomyographic response using the interpolated twitch technique (2009) Journal of Electromyography and Kinesiology, 19 (3), pp. e154-e161. , http://dx.doi.org/10.1016/j.jelekin.2008.01.004, PMid:18304835Orizio, C., Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies (1993) Critical Reviews in Biomedical Engineering, 21 (3), pp. 201-243. , PMid:8243092Orizio, C., Baratta, R.V., Zhou, B.H., Solomonow, M., Veicsteinas, A., Force and surface mechanomyogram relationship in cat gastrocnemius (1999) Journal of Electromyography and Kinesiology, 9 (2), pp. 131-140. , http://dx.doi.org/10.1016/S1050-6411(98)00044-3Orizio, C., Diemont, B., Bianchi, A., Liberati, D., Cerutti, S., Veicsteinas, A., Coherence analysis between soundmyogram and electromyogram (1991) Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 942-943. , Orlando. Orlando1991Orizio, C., Esposito, F., Paganotti, I., Marino, L., Rossi, B., Veicsteinas, A., Electrically-elicited surface mechanomyogram in myotonic dystrophy (1997) Italian Journal of Neurological Sciences, 18 (4), pp. 185-190. , http://dx.doi.org/10.1007/BF02080462, PMid:9323511Orizio, C., Gobbo, M., Diemont, B., Esposito, F., Veicsteinas, A., The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. Historical basis and novel evidence (2003) European Journal of Applied Physiology, 90 (3-4), pp. 326-336. , http://dx.doi.org/10.1007/s00421-003-0924-1, PMid:12923643Oster, G., Jaffe, J.S., Low frequency sounds from sustained contraction of human skeletal muscle (1980) Biophysical Journal, 30 (1), pp. 119-128. , http://dx.doi.org/10.1016/S0006-3495(80)85080-6Packman-Braun, R., Rela

    Convex Hull Area In Triaxial Mechanomyography During Functional Electrical Stimulation

    No full text
    This study employed the convex hull in the analysis of triaxial mechanomyography (MMG) to determine hull area variations along prolonged muscle contractions elicited by functional electrical stimulation (FES). Closed-loop FES systems may need real-time adjustments in control parameters. Such systems may need to process small sample sets. The convex hull area can be applied to small sample sets and it does not suffer with non-stationarities. The MMG sensor used a triaxial accelerometer and the acquired samples were projected onto all planes. The hull determined the smallest convex polygon surrounding all points and its area was computed. Four spinal cord injured volunteers participated in the experiment. The quadriceps femoral muscle was stimulated in order to cause a full knee extension. FES parameters: 1 kHz pulse frequency and a 20 Hz burst frequency. Adjustments in the stimuli amplitude were controlled by a technician to sustain the extension. The results showed that the convex hull area decreased over time. Since the polygons are related to MMG amplitude, decreasing areas were related to muscle fatigue. The convex hull area can be a candidate to follow muscle fatigue during FES-elicited contractions and analysis of short length epochs. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.251256Control and Communication (INSTICC),Institute for Systems and Technologies of InformationAkataki, K., Mita, K., Itoh, Y., Relationship between mechanomyogram and force during voluntary contractions reinvestigated using spectral decomposition (1999) European Journal of Applied Physiology, 80, pp. 173-179Bajd, T., Kralj, A., Sega, J., Turk, R., Benko, H., Strojnik, P., Use of a two-channel functional electrical stimulator to stand paraplegic patients (1981) Physical Therapy, 61, pp. 526-527Beck, T.W., Housh, T.J., Johnson, G.O., Weir, J.P., Cramer, J.T., Coburn, J.W., Malek, M.H., Comparison of fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii (2005) Journal of Electromyography and Kinesiology, 15, p. 1909Chapin, J., Moxon, K., Markowitz, R., Nicolelis, M., Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex (1999) Nature Neuroscience, 2, p. 66470Fong, S., Hang, Y., Mohammed, S., Fiaidhi, J., Stream-based biomedical classification algorithms for analyzing biosignals (2011) Journal of Information Processing Systems, 7, p. 71732Gobbo, M., Cè, E., Diemont, B., Esposito, F., Orizio, C., Torque and surface mechanomyogram parallel reduction during fatiguing stimulation in human muscles (2006) European Journal of Applied Physiology, 97, pp. 9-15Graham, R.L., An efficient algorithm for determining the convex hull of a finite planar set (1972) Information Processing Letters, 1, pp. 132-133Gregory, C.M., Bickel, C.S., Recruitment patterns in human skeletal muscle during electrical stimulation (2005) Physical Therapy, 85, pp. 358-364Hubert, M., Rousseeuw, P.J., Robpca: A new approach to robust principal component analysis (2005) Technometrics, 47, pp. 64-79Jailani, R., Tokhi, M.O., The effect of functional electrical stimulation (fes) on paraplegic muscle fatigue (2012) Ieee 8th International Colloquium on Signal Processing and Its Applications (Cspa), , Shah Alam, Selangor, Malaysia: IeeeLanglois, P.J., Demosthenous, A., Pachnis, I., Donaldson, N., High-power integrated stimulator output stages with floating discharge over a wide voltage range for nerve stimulation (2010) Ieee Transactions on Biomedical Circuits and Systems, 4, pp. 39-48Nogueira-Neto, G.N., Krueger, E., Scheeren, E.M., Nohama, P., Button, S.V.L., Estimulação elétrica funcional aplicada em cadeia aberta-Um estudo de caso com monitoração mecanomiográfica (2011) 5th Latin American Congress of Biomedical Engineering, , Havana: IfmbeOsborne, J.W., Costello, A.B., Sample size and subject to item ratio in principal components analysis (2004) Practical Assessment, Research &Evaluation, 9, p. 8Peng, C.-W., Chen, S.-C., Lai, C.-H., Chen, C.-J., Chen, C.-C., Mizrahi, J., Handa, Y., Review: Clinical benefits of functional electrical stimulation cycling exercise for subjects with central neurological impairments (2011) Journal of Medical and Biological Engineering, 31, pp. 1-11Petitjean, M., Maton, B., Fourment, A., Summation of elementary phonomyograms during isometric twitches in humans (1998) European Journal of Applied Physiology, 77, pp. 527-535Petrofsky, J.S., Electrical stimulation: Neurophysiological basis and application (2004) Basic and Applied Myology, 14, pp. 205-213Qi, L., Wakeling, J.M., Green, A., Lambrecht, K., Ferguson-Pell, M., Spectral properties of electromyographic and mechanomyographic signals during isometric ramp and step contractions in biceps brachii (2011) Journal of Electromyography and Kinesiology, 21, pp. 128-135Rioul, O., Vetterli, M., Wavelets and signal processing (1991) Ieee Signal Processing Magazine, 8, pp. 14-38Schwartz, F.P., De Oliveira, N.F.A., Bottaro, M., Celes, R.S., Análise da estacionariedade do sinal de eletromiografia de superfície nas fases do exercício isocinético de extensão do joelho (2012) Revista Brasileira de Engenharia Biomédica, 28, pp. 44-52Stokes, M.J., Cooper, R.G., Muscle sounds during voluntary and stimulated contractions of the human adductor pollicis muscle (1992) Journal of Applied Physiology, 72, p. 190813Stokes, M.J., Dalton, P.A., Acoustic myography for investigating human skeletal muscle fatigue (1991) Journal of Applied Physiology, 71, pp. 1422-1426Tarata, M., Spaepen, A., Puers, R., The accelerometer mmg measurement approach, in monitoring the muscular fatigue (2001) Measurement Science Review, 1, pp. 47-50Ward, A.R., Robertson, V.J., Variation in torque production with frequency using medium frequency alternating current (1998) Archives of Physical Medicine and Rehabilitation, 79, pp. 1399-1404Xie, H.-B., Zheng, Y.-P., Guo, J.-Y., Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control (2009) Physiological Measurement, 30, pp. 441-457Yoshitake, Y., Ue, H., Miyazaki, M., Moritani, T., Assessment of lower-back muscle fatigue using electromyography, mechanomyography, and near-infrared spectroscopy (2001) European Journal of Applied Physiology, 84, pp. 174-179Yun-Hui, L., Qualitative test and force optimization of 3-d frictional form-closure grasps using linear programming (1999) Ieee Transactions on Robotics and Automation, 15, pp. 163-17

    A New Approach To Assess The Spasticity In Hamstrings Muscles Using Mechanomyography Antagonist Muscular Group

    No full text
    Several pathologies can cause muscle spasticity. Modified Ashworth scale (MAS) can rank spasticity, however its results depend on the physician subjective evaluation. This study aims to show a new approach to spasticity assessment by means of MMG analysis of hamstrings antagonist muscle group (quadriceps muscle). Four subjects participated in the study, divided into two groups regarding MAS (MAS0 and MAS1). MMG sensors were positioned over the muscle belly of rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) muscles. The range of movement was acquired with an electrogoniometer placed laterally to the knee. The system was based on a LabVIEW acquisition program and the MMG sensors were built with triaxial accelerometers. The subjects were submitted to stretching reflexes and the integral of the MMG (MMGINT) signal was calculated to analysis. The results showed that the MMGINT was greater to MAS1 than to MAS0 [muscle RF (p= 0.004), VL (p= 0.001) and VM (p= 0.007)]. The results showed that MMG was viable to detect a muscular tonus increase in antagonist muscular group (quadriceps femoris) of spinal cord injured volunteers. © 2012 IEEE.20602063 IEEE EMB,IEEE CAS,IEEE SMC,SONNETTeive, H.A.G., Zonta, M., Kumagai, Y., Tratamento da espasticidade: Uma atualização (1998) Arq Neuropsiquiatr, 56, pp. 852-858Barnes, S., Gregson, J., Leathley, M., Smith, T., Sharma, A., Watkins, C., Development and inter-rater reliability of an assessment tool for measuring muscle tone in people with hemiplegia after a stroke (1999) Physiotherapy, 85, pp. 405-409Stokes, M., (2000) Neurologia para Fisioterapeutas, , Colômbia: PremierMirbagheri, M.M., Settle, K., Harvey, R., Rymer, W.Z., Neuromuscular Abnormalities associated with spasticity of upper extremity muscles in hemiparetic stroke (2007) J Neurophysiol, 98, p. 629Crone, C., Petersen, N.T., Nielsen, J.E., Hansen, N.L., Nielsen, J.B., (2004) Reciprocal Inhibition and Corticospinal Transmission in the Arm and Leg in Patients with Autosomal Dominant Pure Spastic Paraparesis (ADPSP), 127, p. 2693. , BrainVorrink, S.N., Van Der Woude, L.H., Messenberg, A., Cripton, P.A., Hughes, B., Sawatzky, B.J., Comparison of wheelchair wheels in terms of vibration and spasticity in people with spinal cord injury (2008) Journal of Rehabilitation Research and Development, 45, pp. 1269-1280Tsai, K.H., Chun-Yu, Y.E.H., Chang, H.Y., Jia-Jin, C., Effects of a single session of prolonged muscle stretch on spastic muscle of stroke patients (2001) Proc. Natl. Sci. Counc. ROC (B), 25, pp. 76-81Carr, J.H., Shepherd, R.B., Ada, L., Spasticity: Research findings and implications for intervention (1995) Physiotherapy, 81, pp. 421-429. , AugustMachado, A.B.M., (2006) Neuroanatomia Funcional, , 2ed. São Paulo: AtheneuRapp Jr., C.E., Torres, M.M., The adult with cerebral palsy (2000) Arch Fam Med, 9, pp. 466-472. , MayO'Dwyer, N.J., Ada, L., Neilson, P.D., Spasticity and muscle contracture following stroke (1996) Brain, 119, pp. 1737-1749Crone, C., Johnsen, L.L., Biering-Sorensen, F., Nielsen, J.B., Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury (2003) Brain, 126, pp. 495-507Burke, D., Andrews, J., Gillies, J., The reflex response to sinusoidal stretching in spastic man (1971) Brain, 94, pp. 455-470Corrêa, F.I., Soares, F., Andrade, D.V., Gondo, R.M., Peres, J.A., Fernandes, A.O., Corrêa, J.C.F., Atividade muscular durante a marcha após acidente vascular encefálico (2005) Arq Neuropsiquiatr, 63, pp. 847-851Allison, S.C., Abraham, L.D., Sensitivity of qualitative and quantitative spasticity measures to clinical treatment with cryotherapy (2001) International Journal of Rehabilitation Research, 24, pp. 15-24Tuke, A., Constraint-induced movement therapy: A narrative review (2008) Physiotherapy, 94, pp. 105-114Bohannon, R.W., Smith, M., Interrater reliability of a modified ashworth scale of muscle spasticity (1987) Phys Ther, 67, pp. 206-207. , FebruaryArmstrong, W.J., McGregor, S.J., Yaggie, J.A., Bailey, J.J., Johnson, S.M., Goin, A.M., Kelly, S.R., Reliability of mechanomyography and triaxial accelerometry in the assessment of balance (2010) J Electromyogr Kinesiol, 20, pp. 726-731Huang, C.Y., Wang, C.H., Hwang, I.S., Characterization of the mechanical and neural components of spastic hypertonia with modified H reflex (2006) J Electromyogr Kinesiol, 16, pp. 384-391Krueger, E., Scheeren, E., Chu, G.F.D., Nogueira-Neto, G.N., Button, L.V.D.S.N., Mechanomyography analysis with 0.2 s and 1.0 s time delay after onset of contraction (2010) BIOSTEC 2010: 3rd International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 296-299. , ValenceScheeren, E., Krueger-Beck, E., Nogueira-Neto, G.N., Nohama, P., D, S.V.L., Button, N., Wrist movement characterization by mechanomyography technique (2010) J Med Biol Eng, 30, pp. 373-380Maynard, F.M., Bracken, M.B., Creasey, G., Ditunno, J.F., Donovan, W.H., Ducker, T.B., Garber, S.L., Tator, C.H., International standards for neurological and functional classification of spinal cord injury (1997) Spinal Cord, 35, pp. 266-274Cipriano, J.J., (2003) Photographic Manual of Regional Orthopaedic and Neurological Tests, , 4 ed. Atlanta, Georgia: Lippincott Williams & WilkinsMatsunaga, T., Shimada, Y., Sato, K., Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses (1999) Arch Phys Med Rehabil, 80, pp. 48-53Krueger, E., Scheeren, E.M., Nogueira-Neto, G.N., Da Sn, B.V.L., Nohama, P., Correlation between mechanomyography features and passive movements in healthy and paraplegic subjects (2011) 33rd Annual International Conference of the IEEE EMBS, 2011, pp. 7242-7245. , Boston, Massachusetts USAShinohara, M., Kouzaki, M., Yoshihisa, T., Fukunaga, T., Mechanomyography of the human quadriceps muscle during incremental cycle ergometry (1997) Eur J Appl Physiol, 76, pp. 314-31
    corecore