18 research outputs found

    Complementarity in classical dynamical systems

    Full text link
    The concept of complementarity, originally defined for non-commuting observables of quantum systems with states of non-vanishing dispersion, is extended to classical dynamical systems with a partitioned phase space. Interpreting partitions in terms of ensembles of epistemic states (symbols) with corresponding classical observables, it is shown that such observables are complementary to each other with respect to particular partitions unless those partitions are generating. This explains why symbolic descriptions based on an \emph{ad hoc} partition of an underlying phase space description should generally be expected to be incompatible. Related approaches with different background and different objectives are discussed.Comment: 18 pages, no figure

    An approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom

    Get PDF
    We construct an approximate renormalization transformation that combines Kolmogorov-Arnold-Moser (KAM)and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamiltonians. For the spiral mean frequency vector, we find numerically that the iterations of the transformation on nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding critical invariant tori have the same type of scaling properties. We numerically investigate the structure of the attracting set on the critical surface and find that it is a strange nonchaotic attractor. We compute exponents that characterize its universality class.Comment: 10 pages typeset using REVTeX, 7 PS figure

    Role of fractal dimension in random walks on scale-free networks

    Full text link
    Fractal dimension is central to understanding dynamical processes occurring on networks; however, the relation between fractal dimension and random walks on fractal scale-free networks has been rarely addressed, despite the fact that such networks are ubiquitous in real-life world. In this paper, we study the trapping problem on two families of networks. The first is deterministic, often called (x,y)(x,y)-flowers; the other is random, which is a combination of (1,3)(1,3)-flower and (2,4)(2,4)-flower and thus called hybrid networks. The two network families display rich behavior as observed in various real systems, as well as some unique topological properties not shared by other networks. We derive analytically the average trapping time for random walks on both the (x,y)(x,y)-flowers and the hybrid networks with an immobile trap positioned at an initial node, i.e., a hub node with the highest degree in the networks. Based on these analytical formulae, we show how the average trapping time scales with the network size. Comparing the obtained results, we further uncover that fractal dimension plays a decisive role in the behavior of average trapping time on fractal scale-free networks, i.e., the average trapping time decreases with an increasing fractal dimension.Comment: Definitive version published in European Physical Journal

    Epistemic Entanglement due to Non-Generating Partitions of Classical Dynamical Systems

    Full text link
    Quantum entanglement relies on the fact that pure quantum states are dispersive and often inseparable. Since pure classical states are dispersion-free they are always separable and cannot be entangled. However, entanglement is possible for epistemic, dispersive classical states. We show how such epistemic entanglement arises for epistemic states of classical dynamical systems based on phase space partitions that are not generating. We compute epistemically entangled states for two coupled harmonic oscillators.Comment: 13 pages, no figures; International Journal of Theoretical Physics, 201

    Mean first-passage time for random walks on undirected networks

    Full text link
    In this paper, by using two different techniques we derive an explicit formula for the mean first-passage time (MFPT) between any pair of nodes on a general undirected network, which is expressed in terms of eigenvalues and eigenvectors of an associated matrix similar to the transition matrix. We then apply the formula to derive a lower bound for the MFPT to arrive at a given node with the starting point chosen from the stationary distribution over the set of nodes. We show that for a correlated scale-free network of size NN with a degree distribution P(d)dγP(d)\sim d^{-\gamma}, the scaling of the lower bound is N11/γN^{1-1/\gamma}. Also, we provide a simple derivation for an eigentime identity. Our work leads to a comprehensive understanding of recent results about random walks on complex networks, especially on scale-free networks.Comment: 7 pages, no figures; definitive version published in European Physical Journal

    Control of chaos and its relevancy to spacecraft steering

    No full text

    Controlling Complex Dynamics with Artificial Biochemical Networks

    No full text
    Abstract. Artificial biochemical networks (ABNs) are computational models inspired by the biochemical networks which underlie the cellular activities of biological organisms. This paper shows how evolved ABNs may be used to control chaotic dynamics in both discrete and continuous dynamical systems, illustrating that ABNs can be used to represent complex computational behaviours within evolutionary algorithms. Our results also show that performance is sensitive to model choice, and suggest that conservation laws play an important role in guiding search.
    corecore