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We construct an approximate renormalization transformation that combines Kolmogorov-Arnol’d-Moser
and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of
freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamilto-
nians. For thespiral meanfrequency vector, we find numerically that the iterations of the transformation on
nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically
degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding
critical invariant tori have the same type of scaling properties. We numerically investigate the structure of the
attracting set on the critical surface and find that it ist@nge nonchaotic attractoiVe compute exponents
that characterize its universality cla$$1063-651X99)04211-7
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[. INTRODUCTION tori in these intermediate models act as barriers in phase
space(limiting the diffusion of trajectoriesas for two-dof
The breakup of invariant tori is one of the key mecha-Hamiltonian systems.

nisms of the transition to chaos in Hamiltonian dynamics. The conclusion of Ref.17] was that one can still expect
For two-dimensional systems and for quadratic irrational freuniversalbehavior in the breakup of invariant tori: The uni-
quencies, it has been observed that, at the transition, a siersality is associated with a hyperbolic nonperiodic attractor
quence of periodic orbits approaches geometrically a torus dif the renormalization flow. The idea is that all Hamiltonians
the given frequency, with a nontrivial scaling behavior attracted by renormalization to this set will display se-
[1-3]. This self-similarity has been explained in terms of aduénces of scaling factors that appear in a different order but

nontrivial fixed point of a renormalization-group transforma- with a universal stat|st|cal_d!strlbutlon. The dO”."”a”t un-
tion in the case of the golden mep#-9]. This explanation stable Lyapunov characteristic exponent determines the ap-

's based on the hypothesis, which is strongly supported bgrogcgrgglC;Iitécailrtg':étf)hr?e: T)lxethealtl:tr%/tiggsssﬁrface we deter-
numerical evidence, that the properties of the taith y yzing tray '

Id f pat criticalit be deduced f mine the structure of the critical attractor. Our analysis indi-
golden mean frequengiat criicalily can be deduced oM o405 the existence ofsdrange nonchaotic attractowhose
the existence and the properties of this nontrivial fixed point

n ) - correlation dimension seems to have a value around 1, but it
The sequence of periodic orbits responsible for the breakuR gifficult to analyze it even numerically.

is generated by the continued fraction expansion of the fre- \ye take the definitions as formulated by Grebegil.
quency. For the extension to systems with three degrees @ig). An attractor of a map is called strange if it is not a finite
freedom(dof) involving three incommensurate frequencies, number of points or a piecewise differentiable set. An attrac-
we lack a theory that generalizes the continued fractionsor is chaotic if typical orbits on it have a positive Lyapunov
Numerically, three-dof Hamiltonian systenier, equiva- exponent. The strange attractor we obtain is of the same
lently, four-dimensional volume-preserving mapave been general type as the ones found in Réf8,19|, for quasiperi-
studied with an extension of Greene’s criterjd®—14 and  odically forced systeméf one and two dimensiohsSome
by reconstruction of invariant tori using conjugation theoryof their properties have been rigorously analyzed in Refs.
[15,16. The conclusion of these analyses was that there is n20-27.
geometrical accumulation of periodic orbits around the criti- Chaotic attractors for renormalization maps have been
cal torus, and thus no universalifat least for the specific conjectured and observed in statistical mechaniz3,24
frequency vectors they considejed and dynamical systenf25-29. In Refs.[29,30, a strange

In Ref. [17], an approximate renormalization-group chaotic attractor was found for renormalization of circle
scheme was described for a reduced family of isoenergetimaps, and in Ref.31] similar evidence was found for area-
cally degenerate Hamiltonians, which is an intermediate caspreserving maps, from the scaling analysis of periodic orbits.
between two and three dof, that in appropriate coordinate¥he origin of randomness in these latter studies is due to the
can be interpreted as a one-dof system driven by two perikandomness of the sequence of continued fraction approxi-
odic forces with incommensurate frequencies. This was alsmants for an ensemble of the considered frequencies. In con-
the class of models considered in Rdf1,12,14: They stud- trast, in the present three-dof case, the rational approximants
ied an intermediate case between two-dimensional and fouere a regular sequence, obtained by iteration sihgle uni-
dimensional volume-preserving maps. In particular, invariantmodular matrix, which allows us to define a renormalization
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transformation with &fixed frequency vector. We observe 0 0 1
that this difference leads to a qualitatively distinct structure

of the attractors. Although the geometry of the attractor is N=|1 0 0
singular(i.e., strangg it is not chaotic. 01 -1

In the present paper, we extend the approximate

renormalization-group transformation developed in RET]  The wordresonancaefers to the fact that the small denomi-
to a more general family of Hamiltonians with three dof. We pat0rs ey - 14, appearing in the perturbation series or in the
find that the renormalization trajectories on the critical sur- aAnr iteration tend to zero geometrically as increases
face converge to the reduced family of Hamiltonians consid(wo‘ .= 03X 0 ask—x). We notice thaiw, is an eigen-
ered in Ref[17]. ~ ~ .
Similar types of systems were first studied in Ri&?] vector ofN, whereN denotes the transposed matrixNafAs

with an approximate renormalization scheme that kept les& COnseguence, one can prove ijisatisfies a Diophantine
terms than needed to detect an attractor. Instead, their trangondition[40]. The spectrum oN is composed of one real
formation yielded a rotatiofia centey which is structurally — eigenvalues ! (with e, as eigenvectgr and two complex
unstable, as mentioned in R¢82]. conjugated eigenvaluea,*+i\,=oe™'* (which are of
We define a renormalization transformation that acts omorm larger than oneWe denote by, = QM +iQ?) the

Hamiltonians Wisth three dof written in actsionsA eigenvectors oN associated with these complex eigenval-
=(A1,A;,A3) e R° and anglese=(¢1,¢,,¢3) T (the |es.

three-dimensional torus parametrized, e.g.[ 0@m]°) Our hypothesigwhich is also the starting point of a gen-
eralization of Greene’s criterion in Refgl1,12) is that the
H(A,@)=Ho(A)+V(A, @), (1.))  sequence{w} plays a leading role in the breakup of the

invariant torus with frequency vectan,. In this paper, we
whereHj is the integrable part of the Hamiltonian. We are study the extension of the ideas developed by Escande and
interested in the stability of the torus with frequency vectorDoveil [35,36 and in Ref.[37] to three-dof Hamiltonian
. We suppose that this torus is locatedhat O for Hp, i.e.,  systems, by using an approximation of the renormalization
the linear part oHg is equal towy- A. Kolmogorov-Arnol'd-  scheme proposed by Koch in Rg40]. This scheme is based
Moser(KAM) theorems were proven for Hamiltoniafik 1) on the partition of the modes in two sets, the setesonant
(with suitable restrictions on the perturbatigmrovided that modes(those lying in a cone around the lire,- »=0) and
Ho contains a twist in at least one direction in the actionsthe set ofnonresonant mode&ll the others The scheme
[33], i.e., the Hessian matrix¥?H,/dA?, with elements combines a canonical transformation, which eliminates the
ﬂZHO/aAiaAJ—, is nonzero, andw, satisfies a Diophantine nonresonant modethence there is no small divisors prob-
condition. It shows the existence of the torus with frequencylem), with a scale transformation whose main effect is to
vectorw, for a sufficiently small and smooth perturbatign ~ move some resonant modes into the nonresonant region. It
The invariant torus is a small deformation of the unperturbedurns out that the total transformatidessentially because it
one. To assume nonzero Hessian matrix, we restrict the fanimproves analyticity acts on a space of analytical Hamilto-

ily of Hamiltonians(1.1) to the ones with trace one: nians.
This renormalization scheme was implemented numeri-
#?H, cally for the case of two degrees of freedom in Refs.
tr( > ) =1. (1.2 [8,9,41. For three degrees of freedom, we have implemented
this scheme numerically in Rdf42]. It makes it possible to

compute efficiently the critical couplings for one-parameter

The idea is to set up a transformati@that maps a Hamil- families. The complete scheme is, however, numerically
tonianH into a rescaled Hamiltonia®R(H) such that irrel-  very time consuming, which makes it difficult to analyze the
evant degrees of freedom are eliminated. The transformatioproperties of the renormalization on the critical surface. In
R should have roughly the following propertieR: has an  the present paper, we construct an approximate scheme with
attractive fixed seftrivial fixed se} of integrable Hamilto- the purpose of analyzing the general properties of the renor-
nians that have a smooth invariant torus with the frequencynalization dynamics and, in particular, the structure of the
wy. Every Hamiltonian in its domain of attractic® has a  attracting sets on the critical surface.
smooth invariant torus with frequency veciop. The aim is The approximate scheme is built by considering the three
to show that there is another fixed sgtthat lies on the main resonances,;, v,, andw;. The renormalization focuses
boundarydD (the critical surfaceand that is attractive for on the next smaller scale represented by the resonanges
every Hamiltonian orvD. v, together withw,=Nw;=w»;— 5. It includes a partial

The transformatiorR is defined for dixedfrequency vec- elimination of the perturbatiofthe part that can be consid-
tor @, with three incommensurate components. We choosered nonresonant on the smaller scale, namely, the mgde
wy=(0?,0,1), whereo~1.3247 satisfiee>=c+1 (named  a shift of the resonances, a rescaling of the actions and of the
the spiral mean. From some of its properties; plays a role  energy, and a translation in the action variables.
similar to that of the golden mean in the two-dof c434]. The approximations involved in this scheme are the two
The analogy comes from the fact that one can generate ranain ones used by Escande and Dovid:a quadratic ap-
tional approximants by iterating single unimodular matrix ~ proximation in the actiondas the rescaled Hamiltonian
N. In what follows, we denoteesonancean element of the R(H) is, in general, higher than quadratic in the actipis)
sequencd v,=N“"1»; k=1} wherer,=(1,0,0) and a three-resonance approximation: we only keep the three
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main resonances at each iteration of the transformation, i.eorder to map quadratic Hamiltonians into itself, we expand
we consider the following family of even Hamiltonians H’ to quadratic order in the actions, and we neglect higher
orders. The justification for this approximation is that, as the
torus is located af =0 for H,, one can expect that for small
H(A"O)ZHO(AHgl hd(A)cosmee), (13, itis close toA=0. We notice thah,(A) andhs(A) are
not changed up to ordéd(&°%). Furthermore, we neglect all
whereh, denotes the amplitude of the modag of the per-  the Fourier modes exceft v,, v;, andw,, and all terms of

3

turbation. order greater than 2 ia. This leads to the expression ldf :
Hamiltonian(1.1) is isoenergetically nondegenerate if the

following determinant of order 4 does not vanish: H' =Hg+h,cod v, ¢) +hsycod vy ¢)

2 1

Ty Mo +5({Shy cogv- @)})+{S,hs cos vz o)},

JA? JA

EN -

A where() denotes the mean value defined as
On the other hand, if the determinafit.4) vanishesH is 4
said to be isoenergetically degenerate. In the following sec- <h>(A):f h(A, ) ¢
tion, we define the renormalization transformation for both T3 (2m)°
cases.

The last term of Eq.{2.1) contains the Fourier mode,
Il. RENORMALIZATION TRANSFORMATION =, — v of amplitude

Our transformation is based on the following steps. ohs IS,
(1) We apply a canonical transformation that eliminates hy(A)= 5| Sivy- — +hawg —|. (2.2
K . L . 2 A dA
the first main resonanaoeg . This is performed by a Lie trans-
formation Us:(¢,A)—(¢',A’), generated by a function . . .
L : . We expandh, to quadratic order in the actions.
S(A,¢). The Hamiltonian expressed in the new coordinates (2) From Eq.(2.1), the mean value termy{S,h; cos@,

's given by -¢)}) produces a linear term in the actions. In order for the
R 1 mean value of the linear term iH' to becomewy- A, we
H' =expS)H=H+{S,H}+ E{S,{S,H}}Jr e eliminate this term by a translation in the actioks>A+ a,
' wherea is of orderO(e?) (so it does not produce any other
where{,} is the Poisson bracket between two scalar funceffect up to the second order ).

tions of the actions and angles: (3) We shift the resonanceg— vy _,: We require that the
new angles satisfy cog(, ;- ¢) =cos(y- ¢'), for k=1,2,3.
af ag af dg This is performed by the linear canonical transformation

{f.or= do A IA Je’ B

) ) (A,@)—(N"*A,Ng).
and the operatoB is defined aSH={S,H}. Denoting bye
the size oh,, the generating functioBis determined by the We notice thaiN is an integer matrix with determinant one.
requirement that the ord@(e) of the moder; in H' van-  Therefore, this transformation preserves #estructure of

ishes: the angles. This step changes the frequeagyinto Ny
{S,Ho} +hy(A)cog v, ¢)=0. =0 lay (sincewy is an eigenvector ofl by construction
(4) We rescale the enerdpr, equivalently, the timeby a

This equation has the solution factor o, in order to keep the frequency fixed @},

) (5) We rescale the actions,
S(A,@)=Si(A)sin(p;- @),

A
where H”(A,¢)=AH'(X,¢),
__ A N o . .
Si(A)=——=—, such that conditiori1.2) is satisfied forH”. This normaliza-
w(A) L4 . . . .
tion condition is essential to the convergence of the transfor-
and mation.
A similar type of approximate renormalization transfor-
_dHo mations has been defined in RE2]. The main difference is
a(A)= - =yt O(A). that they used a normalization condition such that the Hes-

sian matrix 9°H,/9A? is of rank 2, instead of condition
By developing 1o(A)- v, in a Taylor series, this step gen- (1.2). Below, we make the distinction between degenerate
erates terms with all the powers of the action variables. Irand nondegenerate Hamiltonians.
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A. Isoenergetically degenerate Hamiltonians

The renormalization transformation described in this sec-

tion was derived in Ref.17]. The integrable pait, is given
by

Ho(A)=wo-A+%(Q-A)2, (2.3

where Q is a free vector of norm onel/Q|=(|Q4|?
+]Q,12+4]Q5/%)Y?=1. In that case, the Hessian matrix
9*Hqy/9A? is of rank one(proportional to the projection op-
erator in theQ) direction); thus the isoenergetic determinant
(1.4) is zero. The relevant directidmwhere there is a twisin
the actions i2. We expandh,(A) in the (Q-A) variable:

1
h(A)=f + ng~A+§mk(Q-A)2. (2.9

We rewrite the mean-value terms ity of Eq. (2.1) as
1
Ho(A) + §<{S,h1005(7’1'¢)}>
1 J
=Ho(A)+ v ﬁ(slhl)

1
=wy-A+aQ-A+ §(1+M)(Q-A)2+c0nst.

The linear termaQ- A is eliminated by a translation in the
actionsA’'=A+Qal(1+pu).
The shift of the resonancéstep(3)] changes the vector

Q into NQ. In order to keep a unit norm, we define the
image ofQ) by
NQ
Q= . (25)
IN€|

The quadratic term of the integrable part ldf becomes

ol INQJ2(1+ 1) (Q' - A)%/2. We rescale the actiofistep(5)]
by a factor

A=0l[NQ|A(1+ p) (2.6)

such thatH, is mapped into
1
Ho(A)= o A+ E(Q'-A)Z,

with Q' given by Eg.(2.5. The transformation is thus

equivalent to a mapping acting on an 11-dimensional space

(recall thatQ) and 2’ have unit norm
{9 Midk=12,3 @) —=>{ T, Ok Mihi=123: Q")
defined by the following relations:
fe=?INQIP(1+ w) i, 2.7

9i=0|NQ||gy: 1, 2.9
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1
m{;mmk+l for k=1,2 (2.9
f4=0?|NQ(1+ w)h§, (2.10
g4= o NQ[hE", 2.19)
2
m,=——oh{?, 2.1
3 1+M 4 ( 2

whereh{) is the coefficient in -A)' of h, given by Eq.
(2.2). Denoting by

Q'Vl _Ql

0_2

L [0 %R 41

and

2

Wy V1 o

we obtain explicit expressions fqr and hg) of the renor-

malization map:

3
n= 5,31(91_,31“1)(5191_,3%]:1_ml),
(0)— 1
hy’'=— E[ﬂ3f3(gl_ﬁlfl)+:81flg3]r

1
hg,l): - E[((ﬂ1+,33)93_ 231B3f3)(91— B1f1)

+ B1f1mg+ Bafam,],

1
hiP)=— E[((ﬁ1+/33/2)m3_ B1(B1+2B3)93

+3B%B5F3)(91— B1f1) +(B1/2+ B3)Mygs
—3B1B3m; f3/2].

Iterating the renormalization map, E@.5 reduces to a ro-

tation; in fact, asw, is an eigenvector oN with an eigen-
value of norm smaller than one, tle®, direction of the vec-
tor Q is contracted. The renormalization transformation
reduces to a ten-dimensional map, where the ve€a-
tates in the plane@™,Q(3)). It is thus parametrized by an
angle 6 defined by

Q=p(QWVcosd+Q3sing).

If we chooseQ(") such that

O =(g"Ycosa,1,0?cosa),
0@ =(¢"sina,0,— c?sina),

where\;+ix,=0%e** are the two complex conjugated
eigenvalues oN, the expression fof) becomes
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Q=p[o Y?coga—0),cos8,0?cog a+ )],
where, since|Q|=1, p=[F(6)] Y2 and

F(0)=0 'cof(a— 6)+cofo+ o cof(a+6).
2.13

The parameter@,; and B35 are expressed as functions @éf

_ _5/2cos{a— 0)
T

73/2C0£{a+ )

RN S T

The expression of the norfiN€)| is given by

Fat6)|Y2

||N9=<UW

B. General quadratic Hamiltonians
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invertible, but, in general, the isoenergetic determir(ar)
is nonzero. We writd, , for k=1,2,3, in the Q0. A) vari-
ables:

E m(ki’j)(ﬂ(i)~A)

. _ 1
h(A)=fit 2, (@0 A)+3
<12 2if=12

x(QW.A), (2.16
where the matricem,, whose elements ara{"), are sym-
metric. We expanth, given by Eq.(2.2) such that Eq(2.16)
also defines the coefficients of the Taylor expansiorn pf
The shift of the resonancéstep(3)] changes2*) and Q(?)
into

NOD =\, 00— )\,0),
NQ@=),00+ )\, 0@,
This is equivalent to a rotation in the plan@®, Q(3)) com-

bined with an amplification by a factom¢+\2)*?= \o.
This step changes the matnw, into m,, whose elements

For the most general quadratic Hamiltonians, we consideare

the family

1
H(A,o)=f(@)+[wot+d(@)]-A+ §A~[M +m(e)]A,
(2.14

whereM and m are 3x3 symmetric matrices, and is a
vector. The matrixM is assumed to be nonzefits trace is
equal to ong and g is not parallel towy. In step(3), the

vector g is renormalized intaNg. Thus the iterations oN
converge to the plane defined 8% and Q?), i.e., thewq
direction of the perturbation is contractégince the modulus
of the eigenvalue associated wiihy, is lower than ong In
Ho, except for the termwy- A which is kept fixed by renor-
malization, in all the other terms of higher orderAnthe w,

direction is also contracted. Notice that the quadratic term

can be written as

1A MA—1
ZA. =5

5 m(oi’i)(ﬂ(i).A)(Q(j).A),
3

i,j=1,2,

where Q)= @, and Q) and Q3 are the real and imagi-
nary part of the eigenvectof2. of N. It is then sufficient to

consider perturbations that only depend on the variables

(@M. A) and @3.A), and an integrable patt, of the
form

Ho(A)=aq- A+ % > ) md Q0. A) QD). A),
(2.19

where Q1) is a fixed vector(real or imaginary part of the
complex eigenvectors dfl), and the matrixmg, with ele-

m = N2m{D+ 20 A ,m{ED+ A ImZ2),

D=y (-2 mis?
+N A m?,
my 22 =x2mD—2x A ,mibD+ N 2m(22).

The matrixmg is changed intam; according to the same
formulas. The vectorg=(g\,g{*) is mapped intog;
=(g.M,9,?), whose elements are

g M =n100+ 00002,
9c®=—nogl0 0102

The rotation(under the action oN) of g, andm, is analo-
gous to the rotation of) [see Eq(2.5]; the amplification is
compensated by the rescaling of the actions to avoid diver-
gences of the transformation. We rewrite the mean-value
terminH’ as

({S,hy cog v, - ¢)})=const- > ahah. A
i=1,2

+ > w0 A)Qb.A).
=12

The linear terma Q1. A are eliminated by a translation in
the actions. The mean value of the quadratic parHofis
S =120(mpt D+ 1 00) Q0. A) QD). A)/2, and thus the
new Hessian matrix is given by3;;_;.0(my’?

mentsm{, is symmetric and will be a variable of the +u(1)Q0e QW where the elements of the matra®
renormalization map with the restriction that the trace of thex Q1) are @Ve QW) =00 . In order to have the

Hessian matrix is equal to one. There are two direct@fs

trace of the Hessian matrix of the rescaled Hamiltonian equal

and Q) of twist in the actions. The Hessian matrix is non- to one, we rescale the actiofstep(5)] by a factor
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0.14

A=0c 2, (mg™ D+ 1 EN (Ve Q0)),
ij=12

The approximate transformation is equivalent to a mapping
acting on a 20-dimensional spatgnce the matrices are
symmetric andn, has a constant trage

({fi.g0 ,m{") ym(()"”}kzl,z,sj,jzl,z)
H({ ﬁ,gﬁ(i) ,m'k’(i,i) xmg(i'j)}kzl,z,sj,jzl,z)v

defined by the following relations

"__
k=Nofiiq,

g =g,

= L L L L L &

- 1 n 20

=T,
FIG. 1. Evolution of the determinam,, of the matrixm, (as a
o N function of the number of iterations): the continuous line is for a
(D =—my ) trajectory of the renormalization transformation on the critical sur-
A face, and the dashed line is for a trajectory inside the domain of
for k=1,2,3 andi,j=1,2 attraction of the trivial fixed set.
differences tend to zero as we iterate a Hamiltonian on the
critical surface(they are of order 10° after 20 iterations on

For each scheméSecs. IIA and Il B, the numerical the critical surface
implementation shows that there are two main domains sepa- From these observations, we conclude that isoenergeti-
rated by acritical surface one where the iteration converges cally degenerate and nondegenerate Hamiltonians belong to
towards a family of integrable Hamiltoniar(ivial fixed the same universality class. According to the general
sed, and the other where it diverges to infinity. renormalization-group picture, the corresponding critical in-
variant tori are predicted to have the same type of scaling
properties.

We lack an explanation of the mechanism of this second

As a first result, we numerically observe that the transforyeduction of the rank. We remark that this second reduction
mation acting on nondegenerate Hamiltonians considered i not just an effect of the rescalifigteps(3)—(5)] as is the
Sec. I B tends to the degenerate ones of Sec. bAthe  case for thew, contraction: the second reduction does not
critical surface More precisely, if we consider Hamiltonians happen outside the critical surface. We conjecture that this
(2.14) with M of rank 3, the contraction in they direction,  reduction will also occur in an exact renormalization scheme,
as explained in Sec. Il B, reduces the rankvbby one; the  pyt this point has not yet been explored.
3X3 matrixM is thus reduced to a22 matrixmy. Further- We remark that the choice of the normalization condition
more the numerical results show that the renormalization re¢1 2) seems essential in order to obtain a nontrivial attractor.
duces this rank to one when we iterate on the critical surfacedther choice§32], such as detm,=1, do not lead to a
Figure 1 shows the evolution, under the renormalizationyritical attractor and the iterations appear to diverge on the
map, of the determinant ahy. The upper curve corresponds critical surface(one eigenvalue ofi, tends to zero and the
to a starting Hamiltonian in the domain of attraction of the gther one to infinity. The reduction to rank one allows us to
trivial fixed set, and the lower one corresponds to iterationgyork, for the precise analysis of the attractor, with the data
on the critical surfaceboth evolutions start with the same gptained for the degenerate caSec. 11 A.
guadratic pajt We also check that the determinant of the

IIl. RENORMALIZATION FLOW

A. Reduction to degenerate Hamiltonians

matricgsmk tends to zero. Furthermore, the d.irections of the B. Trivial attractor
vectorial parametersg(and m) tend to be aligned by the . ) o )
iteration: Hamiltonians(2.16 tend to Hamiltonians(2.4), The domain of attraction of the trivial fixed set is the

and Hamiltoniar(2.15 tends to Hamiltoniari2.3), all with a ~ domain where the perturbation of the iterated Hamiltonians
same directiorf2. In order to characterize this, we defi@e  tends to zero. However, the renormalization trajectories in
as the unit vector with the same directiongasWe compute ~ this domain do not converge to a fixed Hamiltonian but con-
the norm of Q,—Q and Q;—Q, where Q, (respectively Verge to asmooth quasiperiodiset of integrable Hamilto-
Q) is a unit vector with directiong, (respectivelygs). nians. This canPe explained by looking at the nf&5). The
Moreover, in order to see that the quadratic terms are proeigenvalues ofN are ¢! and Joe™'®, where a~27
portional toQ® Q, we compute the norm ah;—cQ® Q, X 0.3880 [ a=arccos(- o¥%2)]. The map(2.5 leads as-
wherec is defined by the constant trace wf, (similar cal-  ymptotically to a rotation of anglea in the plane
culations have been done for the other matricgy. These  (Q1),Q?), after a contraction in thes, direction, as ex-
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FIG. 2. Values of the rescalings as a function of the anglé : ;
betweenQ and QW in the (@), Q) plane. The regular curve is L o -

for the trivial fixed set, and the singular curve is for the nontrivial

fixed set. FIG. 3. Values ofg; as a function of the anglé, on the critical
attractor of the renormalization map.

plained in Sec. Il A. The values of the rescaling@) at the

trivial fixed set are given by a smooth function 6f It is

ted by Eqg(2.5). This t f system has b lyzed i
given explicitly by sented by Eq(2.5). This type of system has been analyzed in

Refs. [18—-27, where one of the main conclusions is the
F(a+0) existence of strange nonchaotic attractors. In order to analyze
ANO)=0?——, the nontrivial attractor from this perspective, we show in Fig.
F(6) 2 a two-dimensional plot of the time series; (\;) of the
scaling factor\;, and the angl&;, wherej is the index of
the iteration on the attractor. This figure shows thaap-
pears to be a continuou®ne-to-ong function of 6. The
evolution of the rescalingk; displays an approximate
period-18 behavior, similar to the one observed on the trivial
attractor. We remark that for the trivial attractal6) is
On the critical surface, the renormalization flow con-smooth, while for the critical attractox(6) has a set of
verges to an attracting set. This set has a codimension-dusps (nondifferentiable poinys Since the driving map
stable manifold, i.e., one expansive direction transverse t@,,,= 6;+ « fills the circle densely, and the renormalization
the critical surface. This set plays, for the system we conmap is smooth, the function(#) must have a dense set of
sider, the same role as the nontrivial fixed point of thecusps. In Fig. 3, we show the corresponding plot for the
renormalization-group transformation for quadratic irrationalparameterg,. This picture is the renormalization trajectory
frequencies in two-dof Hamiltonian systems. In particular, itsof a single initial Hamiltonian on the attractor. It shows that
existence impliesuniversality for one-parameter families g,(6) is not a single valued function &. Similar pictures
crossing the critical surface. Different trajectories of theare obtained for the other coordinates of the map.
transformation display the same values of the rescalings with In order to analyze the structure of the attractor in more
a different order but with aniversalstatistical distribution.  detail, we consider it from a different point of view. We take
We define exponents that characterize the universality clags set of initial conditions on the critical surfa¢eot on the
associated with the spiral mean. The mean rescaling is deitractoy parametrized by an anglé varying over a small
fined by)\:Iimnﬁx(H};l)\j)l’“, where); is the value of the interval [ 6,,6,]. Figure 4a) shows the projection of this
rescaling afterj iterations on the critical surface. We also segment on the plan&(g;). Figure 4b) shows the image of
calculate the largest Lyapunov exponenthat measures the the projection after 100 iterations, and Figc@after 350
approach to criticality as a function of the coupling constantjterations. This shows that as the segment comes closer to the
of the universality class. The result we found is that thesettractor the number of steep oscillations becomes larger,
limits do not depend on the Hamiltonian on the critical sur-suggesting that in the limit they correspond to discontinuities
face where we start the iteration, or on the initial choice ofof the attractor. This behavior is similar to the observations
Q. The coefficientsk and A depend only onw,. Numeri-  of Ref.[18] and is compatible with the results of R¢22].
cally, we find k~0.6427 and\ ~3.1479. These oscillations are associated with abrupt changes of the
We provide numerical evidence that this attractor issigns of the coordinates. One can conjecture that on the at-
strange and nonchaotic. We remark that Egs/)—(2.12) of  tractor, there is an infinite number of such changes of sign.
the renormalization map have the form of a nonlinear systenthe same kind of phenomenon is observed for the other
{fi.0k.my} (for k=1,2,3) driven by a quasiperiodic variable coordinates. In order to see the effect of these changes of
0— 0+ a, given by the evolution of the vectdf) repre- sign in the renormalization dynamics on the attractor, we

whereF is given by Eq(2.13. This trivial rescaling curve is
depicted in Fig. 2. Since/2 is close to 7/18, the evolution
of \ oscillates approximately with period 18.

C. Critical attractor
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FIG. 6. Values of an observablg as a function ofg, on the
6.02 ' ' 0 ' ‘ 6.08 critical attractor: it shows the eight branches of the attractor.

FIG. 4. Evolution of a set of initial conditions on the critical Of the attractor that are not completely disjoint. In order to
surface, parametrized by an angte varying over an interval visualize these eight branches, we display in Fig. 6 the val-
[61,6,]. We depict the projection of this set on the plareq;): ues of an observablB that makes it possible to distinguish
(a) initial set, (b) after 100 iterations, an¢t) after 350 iterations. ~ them. A suitable choice is the weighted sum of the coordi-

nates ofx=(Xq, ... Xg)
compare in Fig. 5 the power spectrum of the time series of 9
g, with that of |g,|. The second one indicates that the be- Bx)=3 X
havior of |g,| is very close to quasiperiodigvith frequen- =17’

cies 1 anda/27), while g; shows a broad spectrum. )

A further insight into the structure of the attractor can beWith
obtained by following the trajectories for a single initial N
and a set of different choices of the other coordinates at a — lim 1 S %))
given “time” (i.e., after a fixed number of iterations of the g o \ =T Db
map. After the relaxation transient, one observes that all

initial points fall into one of eight points of the attracton  wherex;(j) is the jth iterate of an initial condition of the
the example of Re{.18], there are two such limiting points  coordinatex; . These branches are related by symmetry, as
The iteration of these eight points generates eight branchegescribed in Sec. Il D.
In summary, the numerical results suggest the following

(a) characterization of the attractor: It is a set composed of eight
branches that differ only in the signs of one or mbethe
amplitude of the Fourier modeg,). Each of the branches has
a dense set of discontinuities. It seems to be an example in
nine dimensions of the type of attractors described in Ref.
[18].

In order to characterize the singularities, we compute the
correlation dimension of the attractor according to the
method developed by Grassberger and Procd@84 (see
also Ref.[39]). We did not find a clear result, but there is
(b) some evidence that the dimension has a value around 1, in
agreement with Figs. 3 and 6, and with the projection of the
attractor on the planegg,m;) depicted in Fig. 7.

250

0

2500

D. Symmetries of the transformation

|£h|

In this paper, we have considered only even perturbations,
i.e., such that the Fourier modes are only cosine terms. The
results can be extended to the more general case, including
noneven modesy (k=1,2,3), by the following symmetry
argumentg43,7]. These arguments also allow one to under-

FIG. 5. Power spectrum of the evolution on the nontrivial fixed stand the relationship between the eight branches of the at-
set, (a) of the coordinatey,, and(b) of the absolute valuelg,|. tractor.
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' . ' ' . . . H(A,¢) and the ones for Hamiltoniand (A, ¢+ 6). With

this type of shift, any Hamiltonian containing only the three
modesyy, k=1,2,3 (with sine and cosine termiscan be put
into a cosine representation. Thus the attractors for these
models are directly linked by symmetries to the attractor
found in the even case.

The eight branches of the critical attractor are mapped
into each other by symmetries of this type, realized by shifts
in the origin of the angles b@,= 7»,. This corresponds to
the eight possible choices of the signs of the three modes.

0.2

my

IV. CONCLUSION

This paper provides numerical results indicating that for
the spiral mean frequency vector, the critical surface of the
approximate renormalization transformation is the
codimension-1 stable manifold of sirange nonchaotic at-
tractor. This feature is a consequence of the fact tdtas
2 ' ' P ' B two complex conjugated eigenvalu@sith incommensurate

phase which lead to a renormalization map that can be in-

FIG. 7. Projection on the plangy{,m;) of the critical attractor  terpreted as a quasiperiodically driven system. For frequen-
of the renormalization map. cies associated with a matriX with real eigenvalues, the

renormalization dynamics is expected to be qualitatively dif-

We analyze the effect of a shift of the origin of the anglesferent. Moreover, the numerical results suggest that the
on the renormalization transformation. We denote this shiffenormalization transformation can be reduced to an isoen-
as ergetically degenerate family of Hamiltonians at criticality.

] These remarks give new insights applicable to the setup of a
Ty: @@t 0. systematic renormalization transformation, in the spirit of
Refs.[40,8,9.

o
<

The KAM transformatioristep(1)] commutes withZ,. The
action of 7, on the shift of the resonancéstep(3)] is char-
acterized by the following intertwining relatiddO]: ACKNOWLEDGMENTS
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