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Approximate renormalization-group transformation for Hamiltonian systems with three degrees
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We construct an approximate renormalization transformation that combines Kolmogorov-Arnol’d-Moser
and renormalization-group techniques, to analyze instabilities in Hamiltonian systems with three degrees of
freedom. This scheme is implemented both for isoenergetically nondegenerate and for degenerate Hamilto-
nians. For thespiral meanfrequency vector, we find numerically that the iterations of the transformation on
nondegenerate Hamiltonians tend to degenerate ones on the critical surface. As a consequence, isoenergetically
degenerate and nondegenerate Hamiltonians belong to the same universality class, and thus the corresponding
critical invariant tori have the same type of scaling properties. We numerically investigate the structure of the
attracting set on the critical surface and find that it is astrange nonchaotic attractor. We compute exponents
that characterize its universality class.@S1063-651X~99!04211-7#

PACS number~s!: 05.45.Ac, 05.10.Cc, 45.20.Jj, 05.45.Tp
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I. INTRODUCTION

The breakup of invariant tori is one of the key mech
nisms of the transition to chaos in Hamiltonian dynami
For two-dimensional systems and for quadratic irrational f
quencies, it has been observed that, at the transition, a
quence of periodic orbits approaches geometrically a toru
the given frequency, with a nontrivial scaling behavi
@1–3#. This self-similarity has been explained in terms o
nontrivial fixed point of a renormalization-group transform
tion in the case of the golden mean@4–9#. This explanation
is based on the hypothesis, which is strongly supported
numerical evidence, that the properties of the tori~with
golden mean frequency! at criticality can be deduced from
the existence and the properties of this nontrivial fixed po
The sequence of periodic orbits responsible for the brea
is generated by the continued fraction expansion of the
quency. For the extension to systems with three degree
freedom~dof! involving three incommensurate frequencie
we lack a theory that generalizes the continued fractio
Numerically, three-dof Hamiltonian systems~or, equiva-
lently, four-dimensional volume-preserving maps! have been
studied with an extension of Greene’s criterion@10–14# and
by reconstruction of invariant tori using conjugation theo
@15,16#. The conclusion of these analyses was that there i
geometrical accumulation of periodic orbits around the cr
cal torus, and thus no universality~at least for the specific
frequency vectors they considered!.

In Ref. @17#, an approximate renormalization-grou
scheme was described for a reduced family of isoenerg
cally degenerate Hamiltonians, which is an intermediate c
between two and three dof, that in appropriate coordina
can be interpreted as a one-dof system driven by two p
odic forces with incommensurate frequencies. This was a
the class of models considered in Ref.@11,12,14#: They stud-
ied an intermediate case between two-dimensional and f
dimensional volume-preserving maps. In particular, invari
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tori in these intermediate models act as barriers in ph
space~limiting the diffusion of trajectories! as for two-dof
Hamiltonian systems.

The conclusion of Ref.@17# was that one can still expec
universalbehavior in the breakup of invariant tori: The un
versality is associated with a hyperbolic nonperiodic attrac
of the renormalization flow. The idea is that all Hamiltonia
attracted by renormalization to this set will display s
quences of scaling factors that appear in a different order
with a universal statistical distribution. The dominant u
stable Lyapunov characteristic exponent determines the
proach to criticality of the universality class.

By analyzing trajectories on the critical surface, we det
mine the structure of the critical attractor. Our analysis in
cates the existence of astrange nonchaotic attractorwhose
correlation dimension seems to have a value around 1, b
is difficult to analyze it even numerically.

We take the definitions as formulated by Grebogiet al.
@18#. An attractor of a map is called strange if it is not a fini
number of points or a piecewise differentiable set. An attr
tor is chaotic if typical orbits on it have a positive Lyapuno
exponent. The strange attractor we obtain is of the sa
general type as the ones found in Ref.@18,19#, for quasiperi-
odically forced systems~of one and two dimensions!. Some
of their properties have been rigorously analyzed in Re
@20–22#.

Chaotic attractors for renormalization maps have be
conjectured and observed in statistical mechanics@23,24#
and dynamical systems@25–28#. In Refs.@29,30#, a strange
chaotic attractor was found for renormalization of circ
maps, and in Ref.@31# similar evidence was found for area
preserving maps, from the scaling analysis of periodic orb
The origin of randomness in these latter studies is due to
randomness of the sequence of continued fraction appr
mants for an ensemble of the considered frequencies. In
trast, in the present three-dof case, the rational approxim
are a regular sequence, obtained by iteration of asingleuni-
modular matrix, which allows us to define a renormalizati
5412 © 1999 The American Physical Society
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PRE 60 5413APPROXIMATE RENORMALIZATION-GROUP . . .
transformation with afixed frequency vector. We observ
that this difference leads to a qualitatively distinct structu
of the attractors. Although the geometry of the attractor
singular~i.e., strange!, it is not chaotic.

In the present paper, we extend the approxim
renormalization-group transformation developed in Ref.@17#
to a more general family of Hamiltonians with three dof. W
find that the renormalization trajectories on the critical s
face converge to the reduced family of Hamiltonians cons
ered in Ref.@17#.

Similar types of systems were first studied in Ref.@32#
with an approximate renormalization scheme that kept
terms than needed to detect an attractor. Instead, their tr
formation yielded a rotation~a center! which is structurally
unstable, as mentioned in Ref.@32#.

We define a renormalization transformation that acts
Hamiltonians with three dof written in actionsA
5(A1 ,A2 ,A3)PR3 and anglesw5(w1 ,w2 ,w3)PT3 ~the
three-dimensional torus parametrized, e.g., by@0,2p#3)

H~A,w!5H0~A!1V~A,w!, ~1.1!

whereH0 is the integrable part of the Hamiltonian. We a
interested in the stability of the torus with frequency vec
v0. We suppose that this torus is located atA50 for H0, i.e.,
the linear part ofH0 is equal tov0•A. Kolmogorov-Arnol’d-
Moser~KAM ! theorems were proven for Hamiltonians~1.1!
~with suitable restrictions on the perturbation! provided that
H0 contains a twist in at least one direction in the actio
@33#, i.e., the Hessian matrix]2H0 /]A2, with elements
]2H0 /]Ai]Aj , is nonzero, andv0 satisfies a Diophantine
condition. It shows the existence of the torus with frequen
vectorv0 for a sufficiently small and smooth perturbationV.
The invariant torus is a small deformation of the unperturb
one. To assume nonzero Hessian matrix, we restrict the f
ily of Hamiltonians~1.1! to the ones with trace one:

trS ]2H0

]A2 D 51. ~1.2!

The idea is to set up a transformationR that maps a Hamil-
tonian H into a rescaled HamiltonianR(H) such that irrel-
evant degrees of freedom are eliminated. The transforma
R should have roughly the following properties:R has an
attractive fixed set~trivial fixed set! of integrable Hamilto-
nians that have a smooth invariant torus with the freque
v0. Every Hamiltonian in its domain of attractionD has a
smooth invariant torus with frequency vectorv0. The aim is
to show that there is another fixed setL that lies on the
boundary]D ~the critical surface! and that is attractive for
every Hamiltonian on]D.

The transformationR is defined for afixedfrequency vec-
tor v0 with three incommensurate components. We cho
v05(s2,s,1), wheres'1.3247 satisfiess35s11 ~named
thespiral mean!. From some of its properties,s plays a role
similar to that of the golden mean in the two-dof case@34#.
The analogy comes from the fact that one can generate
tional approximants by iterating asingleunimodular matrix
N. In what follows, we denoteresonancean element of the
sequence$nk5Nk21n1 ,k>1% wheren15(1,0,0) and
e
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0 1 21
D .

The wordresonancerefers to the fact that the small denom
natorsv0•nk appearing in the perturbation series or in t
KAM iteration tend to zero geometrically ask increases
(v0•nk5s32k→0 ask→`). We notice thatv0 is an eigen-

vector ofÑ, whereÑ denotes the transposed matrix ofN. As
a consequence, one can prove thatv0 satisfies a Diophantine

condition @40#. The spectrum ofÑ is composed of one rea
eigenvalues21 ~with v0 as eigenvector!, and two complex
conjugated eigenvaluesl16 il25Ase7 ia ~which are of
norm larger than one!. We denote byV65V(1)6 i V(2) the

eigenvectors ofÑ associated with these complex eigenv
ues.

Our hypothesis~which is also the starting point of a gen
eralization of Greene’s criterion in Refs.@11,12#! is that the
sequence$nk% plays a leading role in the breakup of th
invariant torus with frequency vectorv0. In this paper, we
study the extension of the ideas developed by Escande
Doveil @35,36# and in Ref. @37# to three-dof Hamiltonian
systems, by using an approximation of the renormalizat
scheme proposed by Koch in Ref.@40#. This scheme is base
on the partition of the modes in two sets, the set ofresonant
modes~those lying in a cone around the linev0•n50) and
the set ofnonresonant modes~all the others!. The scheme
combines a canonical transformation, which eliminates
nonresonant modes~hence there is no small divisors prob
lem!, with a scale transformation whose main effect is
move some resonant modes into the nonresonant regio
turns out that the total transformation~essentially because i
improves analyticity! acts on a space of analytical Hamilto
nians.

This renormalization scheme was implemented num
cally for the case of two degrees of freedom in Re
@8,9,41#. For three degrees of freedom, we have implemen
this scheme numerically in Ref.@42#. It makes it possible to
compute efficiently the critical couplings for one-parame
families. The complete scheme is, however, numerica
very time consuming, which makes it difficult to analyze t
properties of the renormalization on the critical surface.
the present paper, we construct an approximate scheme
the purpose of analyzing the general properties of the re
malization dynamics and, in particular, the structure of
attracting sets on the critical surface.

The approximate scheme is built by considering the th
main resonancesn1 , n2, andn3. The renormalization focuse
on the next smaller scale represented by the resonancen2 ,
n3, together withn45Nn35n12n3. It includes a partial
elimination of the perturbation~the part that can be consid
ered nonresonant on the smaller scale, namely, the moden1),
a shift of the resonances, a rescaling of the actions and o
energy, and a translation in the action variables.

The approximations involved in this scheme are the t
main ones used by Escande and Doveil:~a! a quadratic ap-
proximation in the actions@as the rescaled Hamiltonia
R(H) is, in general, higher than quadratic in the actions#; ~b!
a three-resonance approximation: we only keep the th



i.

e

e
th

te
-

te

nc

-
. I

nd
her
the
ll

ll

he

r

.

for-

r-

es-

ate

5414 PRE 60CHANDRE, JAUSLIN, BENFATTO, AND CELLETTI
main resonances at each iteration of the transformation,
we consider the following family of even Hamiltonians

H~A,w!5H0~A!1 (
k51

3

hk~A!cos~nk•w!, ~1.3!

wherehk denotes the amplitude of the modenk of the per-
turbation.

Hamiltonian~1.1! is isoenergetically nondegenerate if th
following determinant of order 4 does not vanish:

detU ]2H0

]A2

]H0

]A

S ]H0

]A D T

0
U5” 0. ~1.4!

On the other hand, if the determinant~1.4! vanishes,H is
said to be isoenergetically degenerate. In the following s
tion, we define the renormalization transformation for bo
cases.

II. RENORMALIZATION TRANSFORMATION

Our transformation is based on the following steps.
~1! We apply a canonical transformation that elimina

the first main resonancen1. This is performed by a Lie trans
formation US :(w,A)°(w8,A8), generated by a function
S(A,w). The Hamiltonian expressed in the new coordina
is given by

H85exp~Ŝ!H[H1$S,H%1
1

2!
ˆS,$S,H%‰1•••,

where$ , % is the Poisson bracket between two scalar fu
tions of the actions and angles:

$ f ,g%5
] f

]w
•

]g

]A
2

] f

]A
•

]g

]w
,

and the operatorŜ is defined asŜH[$S,H%. Denoting by«
the size ofhk , the generating functionS is determined by the
requirement that the orderO(«) of the moden1 in H8 van-
ishes:

$S,H0%1h1~A!cos~n1•w!50.

This equation has the solution

S~A,w!5S1~A!sin~n1•w!,

where

S1~A!52
h1~A!

v~A!•n1
,

and

v~A!5
]H0

]A
5v01O~A!.

By developing 1/v(A)•n1 in a Taylor series, this step gen
erates terms with all the powers of the action variables
e.,

c-

s

s

-

n

order to map quadratic Hamiltonians into itself, we expa
H8 to quadratic order in the actions, and we neglect hig
orders. The justification for this approximation is that, as
torus is located atA50 for H0, one can expect that for sma
«, it is close toA50. We notice thath2(A) andh3(A) are
not changed up to orderO(«3). Furthermore, we neglect a
the Fourier modes except0, n2 , n3, andn4, and all terms of
order greater than 2 in«. This leads to the expression ofH8:

H85H01h2 cos~n2•w!1h3 cos~n3•w!

1
1

2
^$S,h1 cos~n1•w!%&1$S,h3 cos~n3•w!%,

~2.1!

where^ & denotes the mean value defined as

^h&~A!5E
T3

h~A,w!
d3w

~2p!3
.

The last term of Eq.~2.1! contains the Fourier moden4
5n12n3 of amplitude

h4~A!5
1

2 S S1n1•
]h3

]A
1h3n3•

]S1

]A D . ~2.2!

We expandh4 to quadratic order in the actions.
~2! From Eq. ~2.1!, the mean value term̂$S,h1 cos(n1

•w)%& produces a linear term in the actions. In order for t
mean value of the linear term inH8 to becomev0•A, we
eliminate this term by a translation in the actionsA°A1a,
wherea is of orderO(«2) ~so it does not produce any othe
effect up to the second order in«).

~3! We shift the resonancesnk°nk21: We require that the
new angles satisfy cos(nk11•w)5cos(nk•w8), for k51,2,3.
This is performed by the linear canonical transformation

~A,w!°~N21A,Ñw!.

We notice thatN is an integer matrix with determinant one
Therefore, this transformation preserves theT3 structure of

the angles. This step changes the frequencyv0 into Ñv0

5s21v0 ~sincev0 is an eigenvector ofÑ by construction!.
~4! We rescale the energy~or, equivalently, the time! by a

factor s, in order to keep the frequency fixed atv0.
~5! We rescale the actions,

H9~A,w!5lH8S A

l
,wD ,

such that condition~1.2! is satisfied forH9. This normaliza-
tion condition is essential to the convergence of the trans
mation.

A similar type of approximate renormalization transfo
mations has been defined in Ref.@32#. The main difference is
that they used a normalization condition such that the H
sian matrix ]2H0 /]A2 is of rank 2, instead of condition
~1.2!. Below, we make the distinction between degener
and nondegenerate Hamiltonians.
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A. Isoenergetically degenerate Hamiltonians

The renormalization transformation described in this s
tion was derived in Ref.@17#. The integrable partH0 is given
by

H0~A!5v0•A1
1

2
~V•A!2, ~2.3!

where V is a free vector of norm one:iVi5(uV1u2

1uV2u21uV3u2)1/251. In that case, the Hessian matr
]2H0 /]A2 is of rank one~proportional to the projection op
erator in theV direction!; thus the isoenergetic determina
~1.4! is zero. The relevant direction~where there is a twist! in
the actions isV. We expandhk(A) in the (V•A) variable:

hk~A!5 f k1gkV•A1
1

2
mk~V•A!2. ~2.4!

We rewrite the mean-value terms inH8 of Eq. ~2.1! as

H0~A!1
1

2
^$S,h1 cos~n1•w!%&

5H0~A!1
1

4
n1•

]

]A
~S1h1!

5v0•A1aV•A1
1

2
~11m!~V•A!21const.

The linear termaV•A is eliminated by a translation in th
actionsA85A1Va/(11m).

The shift of the resonances@step~3!# changes the vecto

V into ÑV. In order to keep a unit norm, we define th
image ofV by

V85
ÑV

iÑVi
. ~2.5!

The quadratic term of the integrable part ofH8 becomes

siÑVi2(11m)(V8•A)2/2. We rescale the actions@step~5!#
by a factor

l5siÑVi2~11m! ~2.6!

such thatH0 is mapped into

H08~A!5v0•A1
1

2
~V8•A!2,

with V8 given by Eq. ~2.5!. The transformation is thus
equivalent to a mapping acting on an 11-dimensional sp
~recall thatV andV8 have unit norm!

~$ f k ,gk ,mk%k51,2,3;V!°~$ f k8 ,gk8 ,mk8%k51,2,3;V8!,

defined by the following relations:

f k85s2iÑVi2~11m! f k11 , ~2.7!

gk85siÑVigk11 , ~2.8!
-

ce

mk85
1

11m
mk11 for k51,2 ~2.9!

f 385s2iÑVi2~11m!h4
(0) , ~2.10!

g385siÑVih4
(1) , ~2.11!

m385
2

11m
h4

(2) , ~2.12!

whereh4
( i ) is the coefficient in (V•A) i of h4 given by Eq.

~2.2!. Denoting by

b15
V•n1

v0•n1
5

V1

s2

and

b35
V•n3

v0•n1
5

V3

s2
,

we obtain explicit expressions form and h4
( i ) of the renor-

malization map:

m5
3

2
b1~g12b1f 1!~b1g12b1

2f 12m1!,

h4
(0)52

1

2
@b3f 3~g12b1f 1!1b1f 1g3#,

h4
(1)52

1

2
@„~b11b3!g322b1b3f 3…~g12b1f 1!

1b1f 1m31b3f 3m1#,

h4
(2)52

1

2
@„~b11b3/2!m32b1~b112b3!g3

13b1
2b3f 3…~g12b1f 1!1~b1/21b3!m1g3

23b1b3m1f 3/2#.

Iterating the renormalization map, Eq.~2.5! reduces to a ro-

tation; in fact, asv0 is an eigenvector ofÑ with an eigen-
value of norm smaller than one, thev0 direction of the vec-
tor V is contracted. The renormalization transformati
reduces to a ten-dimensional map, where the vectorV ro-
tates in the plane (V(1),V(2)). It is thus parametrized by an
angleu defined by

V5r~V(1)cosu1V(2)sinu!.

If we chooseV( i ) such that

V(1)5~s21/2cosa,1,s1/2cosa!,

V(2)5~s21/2sina,0,2s1/2sina!,

where l16 il25s1/2e7 ia are the two complex conjugate
eigenvalues ofN, the expression forV becomes
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V5r@s21/2cos~a2u!,cosu,s1/2cos~a1u!#,

where, sinceiVi51, r5@F(u)#21/2, and

F~u!5s21 cos2~a2u!1cos2u1s cos2~a1u!.
~2.13!

The parametersb1 andb3 are expressed as functions ofu:

b15s25/2
cos~a2u!

@F~u!#1/2
,

b35s23/2
cos~a1u!

@F~u!#1/2
.

The expression of the normiÑVi is given by

iÑVi5S s
F~a1u!

F~u! D 1/2

.

B. General quadratic Hamiltonians

For the most general quadratic Hamiltonians, we cons
the family

H~A,w!5 f ~w!1@v01g~w!#•A1
1

2
A•@M1m~w!#A,

~2.14!

where M and m are 333 symmetric matrices, andg is a
vector. The matrixM is assumed to be nonzero~its trace is
equal to one! and g is not parallel tov0. In step ~3!, the

vector g is renormalized intoÑg. Thus the iterations ofÑ
converge to the plane defined byV(1) andV(2), i.e., thev0
direction of the perturbation is contracted~since the modulus
of the eigenvalue associated withv0 is lower than one!. In
H0, except for the termv0•A which is kept fixed by renor-
malization, in all the other terms of higher order inA, thev0
direction is also contracted. Notice that the quadratic te
can be written as

1

2
A•MA5

1

2 (
i , j 51,2,3

m0
( i , j )~V( i )

•A!~V( j )
•A!,

whereV(3)5v0, andV(1) andV(2) are the real and imagi

nary part of the eigenvectorsV6 of Ñ. It is then sufficient to
consider perturbations that only depend on the variab
(V(1)

•A) and (V(2)
•A), and an integrable partH0 of the

form

H0~A!5v0•A1
1

2 (
i , j 51,2

m0
( i , j )~V( i )

•A!~V( j )
•A!,

~2.15!

whereV( i ) is a fixed vector~real or imaginary part of the

complex eigenvectors ofÑ), and the matrixm0, with ele-
ments m0

( i , j ) , is symmetric and will be a variable of th
renormalization map with the restriction that the trace of
Hessian matrix is equal to one. There are two directionsV(1)

andV(2) of twist in the actions. The Hessian matrix is no
er

s

e

invertible, but, in general, the isoenergetic determinant~1.4!
is nonzero. We writehk , for k51,2,3, in the (V( i )

•A) vari-
ables:

hk~A!5 f k1 (
i 51,2

gk
( i )~V( i )

•A!1
1

2 (
i , j 51,2

mk
( i , j )~V( i )

•A!

3~V( j )
•A!, ~2.16!

where the matricesmk , whose elements aremk
( i , j ) , are sym-

metric. We expandh4 given by Eq.~2.2! such that Eq.~2.16!
also defines the coefficients of the Taylor expansion ofh4.
The shift of the resonances@step~3!# changesV(1) andV(2)

into

ÑV(1)5l1V(1)2l2V(2),

ÑV(2)5l2V(1)1l1V(2).

This is equivalent to a rotation in the plane (V(1),V(2)) com-
bined with an amplification by a factor (l1

21l2
2)1/25As.

This step changes the matrixmk into mk8 , whose elements
are

mk8
(1,1)5l1

2mk
(1,1)12l1l2mk

(1,2)1l2
2mk

(2,2) ,

mk8
(1,2)5mk8

(2,1)52l1l2mk
(1,1)1~l1

22l2
2!mk

(1,2)

1l1l2mk
(2,2) ,

mk8
(2,2)5l2

2mk
(1,1)22l1l2mk

(1,2)1l1
2mk

(2,2) .

The matrix m0 is changed intom08 according to the same
formulas. The vectorgk5(gk

(1) ,gk
(2)) is mapped intogk8

5(gk8
(1) ,gk8

(2)), whose elements are

gk8
(1)5l1gk

(1)1l2gk
(2) ,

gk8
(2)52l2gk

(1)1l1gk
(2) .

The rotation~under the action ofÑ) of gk andmk is analo-
gous to the rotation ofV @see Eq.~2.5!#; the amplification is
compensated by the rescaling of the actions to avoid div
gences of the transformation. We rewrite the mean-va
term in H8 as

^$S,h1 cos~n1•w!%&5const1 (
i 51,2

a( i )V( i )
•A

1 (
i , j 51,2

m ( i , j )~V( i )
•A!~V( j )

•A!.

The linear termsa( i )V( i )
•A are eliminated by a translation i

the actions. The mean value of the quadratic part ofH8 is
( i , j 51,2s(m08

( i , j )1m ( i , j ))(V( i )
•A)(V( j )

•A)/2, and thus the
new Hessian matrix is given by( i , j 51,2s(m08

( i , j )

1m ( i , j ))V( i )
^ V( j ), where the elements of the matrixV( i )

^ V( j ) are (V( i )
^ V( j ))kl5Vk

( i )V l
( j ) . In order to have the

trace of the Hessian matrix of the rescaled Hamiltonian eq
to one, we rescale the actions@step~5!# by a factor
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l5s (
i , j 51,2

~m08
( i , j )1m ( i , j )!tr~V( i )

^ V( j )!.

The approximate transformation is equivalent to a mapp
acting on a 20-dimensional space~since the matricesm are
symmetric andm0 has a constant trace!:

~$ f k ,gk
( i ) ,mk

( i , j ) ,m0
( i , j )%k51,2,3;i , j 51,2!

°~$ f k9 ,gk9
( i ) ,mk9

( i , j ) ,m09
( i , j )%k51,2,3;i , j 51,2!,

defined by the following relations

f k95ls f k11 ,

gk9
( i )5sgk118( i ) ,

mk9
( i , j )5

s

l
mk118( i , j ) ,

m09
( i , j )5

s

l
m08

( i , j ) ,

for k51,2,3 andi , j 51,2.

III. RENORMALIZATION FLOW

For each scheme~Secs. II A and II B!, the numerical
implementation shows that there are two main domains s
rated by acritical surface: one where the iteration converge
towards a family of integrable Hamiltonians~trivial fixed
set!, and the other where it diverges to infinity.

A. Reduction to degenerate Hamiltonians

As a first result, we numerically observe that the transf
mation acting on nondegenerate Hamiltonians considere
Sec. II B tends to the degenerate ones of Sec. II A,on the
critical surface. More precisely, if we consider Hamiltonian
~2.14! with M of rank 3, the contraction in thev0 direction,
as explained in Sec. II B, reduces the rank ofM by one; the
333 matrixM is thus reduced to a 232 matrixm0. Further-
more the numerical results show that the renormalization
duces this rank to one when we iterate on the critical surfa
Figure 1 shows the evolution, under the renormalizat
map, of the determinant ofm0. The upper curve correspond
to a starting Hamiltonian in the domain of attraction of t
trivial fixed set, and the lower one corresponds to iteratio
on the critical surface~both evolutions start with the sam
quadratic part!. We also check that the determinant of t
matricesmk tends to zero. Furthermore, the directions of t
vectorial parameters (g and m) tend to be aligned by the
iteration: Hamiltonians~2.16! tend to Hamiltonians~2.4!,
and Hamiltonian~2.15! tends to Hamiltonian~2.3!, all with a
same directionV. In order to characterize this, we defineV
as the unit vector with the same direction asg1. We compute
the norm ofV22V and V32V, where V2 ~respectively
V3) is a unit vector with directiong2 ~respectivelyg3).
Moreover, in order to see that the quadratic terms are p
portional toV^ V, we compute the norm ofm02cV^ V,
wherec is defined by the constant trace ofm0 ~similar cal-
culations have been done for the other matricesmk). These
g

a-

-
in

e-
e.
n

s

o-

differences tend to zero as we iterate a Hamiltonian on
critical surface~they are of order 1025 after 20 iterations on
the critical surface!.

From these observations, we conclude that isoenerg
cally degenerate and nondegenerate Hamiltonians belon
the same universality class. According to the gene
renormalization-group picture, the corresponding critical
variant tori are predicted to have the same type of sca
properties.

We lack an explanation of the mechanism of this seco
reduction of the rank. We remark that this second reduct
is not just an effect of the rescaling@steps~3!–~5!# as is the
case for thev0 contraction: the second reduction does n
happen outside the critical surface. We conjecture that
reduction will also occur in an exact renormalization schem
but this point has not yet been explored.

We remark that the choice of the normalization conditi
~1.2! seems essential in order to obtain a nontrivial attrac
Other choices@32#, such as detm051, do not lead to a
critical attractor and the iterations appear to diverge on
critical surface~one eigenvalue ofm0 tends to zero and the
other one to infinity!. The reduction to rank one allows us t
work, for the precise analysis of the attractor, with the d
obtained for the degenerate case~Sec. II A!.

B. Trivial attractor

The domain of attraction of the trivial fixed set is th
domain where the perturbation of the iterated Hamiltonia
tends to zero. However, the renormalization trajectories
this domain do not converge to a fixed Hamiltonian but co
verge to asmooth quasiperiodicset of integrable Hamilto-
nians. This can be explained by looking at the map~2.5!. The

eigenvalues ofÑ are s21 and Ase6 ia, where a'2p
30.3880 @a5arccos(2s3/2/2)#. The map ~2.5! leads as-
ymptotically to a rotation of anglea in the plane
(V(1),V(2)), after a contraction in thev0 direction, as ex-

FIG. 1. Evolution of the determinantDn of the matrixm0 ~as a
function of the number of iterationsn): the continuous line is for a
trajectory of the renormalization transformation on the critical s
face, and the dashed line is for a trajectory inside the domain
attraction of the trivial fixed set.
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plained in Sec. II A. The values of the rescalings~2.6! at the
trivial fixed set are given by a smooth function ofu. It is
given explicitly by

l~u!5s2
F~a1u!

F~u!
,

whereF is given by Eq.~2.13!. This trivial rescaling curve is
depicted in Fig. 2. Sincea/2p is close to 7/18, the evolution
of l oscillates approximately with period 18.

C. Critical attractor

On the critical surface, the renormalization flow co
verges to an attracting set. This set has a codimensio
stable manifold, i.e., one expansive direction transverse
the critical surface. This set plays, for the system we c
sider, the same role as the nontrivial fixed point of t
renormalization-group transformation for quadratic irration
frequencies in two-dof Hamiltonian systems. In particular,
existence impliesuniversality for one-parameter families
crossing the critical surface. Different trajectories of t
transformation display the same values of the rescalings
a different order but with auniversalstatistical distribution.
We define exponents that characterize the universality c
associated with the spiral mean. The mean rescaling is
fined byl5 limn→`() j 51

n l j )
1/n, wherel j is the value of the

rescaling afterj iterations on the critical surface. We als
calculate the largest Lyapunov exponentk that measures the
approach to criticality as a function of the coupling consta
of the universality class. The result we found is that the
limits do not depend on the Hamiltonian on the critical s
face where we start the iteration, or on the initial choice
V. The coefficientsk and l depend only onv0. Numeri-
cally, we findk'0.6427 andl'3.1479.

We provide numerical evidence that this attractor
strange and nonchaotic. We remark that Eqs.~2.7!–~2.12! of
the renormalization map have the form of a nonlinear sys
$ f k ,gk ,mk% ~for k51,2,3) driven by a quasiperiodic variab
u°u1a, given by the evolution of the vectorV repre-

FIG. 2. Values of the rescalingsl as a function of the angleu
betweenV andV(1) in the (V(1),V(2)) plane. The regular curve is
for the trivial fixed set, and the singular curve is for the nontriv
fixed set.
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sented by Eq.~2.5!. This type of system has been analyzed
Refs. @18–22#, where one of the main conclusions is th
existence of strange nonchaotic attractors. In order to ana
the nontrivial attractor from this perspective, we show in F
2 a two-dimensional plot of the time series (u j ,l j ) of the
scaling factorl j , and the angleu j , wherej is the index of
the iteration on the attractor. This figure shows thatl ap-
pears to be a continuous~one-to-one! function of u. The
evolution of the rescalingl j displays an approximate
period-18 behavior, similar to the one observed on the triv
attractor. We remark that for the trivial attractorl(u) is
smooth, while for the critical attractorl(u) has a set of
cusps ~nondifferentiable points!. Since the driving map
u j 115u j1a fills the circle densely, and the renormalizatio
map is smooth, the functionl(u) must have a dense set o
cusps. In Fig. 3, we show the corresponding plot for t
parameterg1. This picture is the renormalization trajector
of a single initial Hamiltonian on the attractor. It shows th
g1(u) is not a single valued function ofu. Similar pictures
are obtained for the other coordinates of the map.

In order to analyze the structure of the attractor in mo
detail, we consider it from a different point of view. We tak
a set of initial conditions on the critical surface~not on the
attractor! parametrized by an angleu varying over a small
interval @u1 ,u2#. Figure 4~a! shows the projection of this
segment on the plane (u,g1). Figure 4~b! shows the image of
the projection after 100 iterations, and Fig. 4~c! after 350
iterations. This shows that as the segment comes closer t
attractor the number of steep oscillations becomes lar
suggesting that in the limit they correspond to discontinuit
of the attractor. This behavior is similar to the observatio
of Ref. @18# and is compatible with the results of Ref.@22#.
These oscillations are associated with abrupt changes o
signs of the coordinates. One can conjecture that on the
tractor, there is an infinite number of such changes of s
The same kind of phenomenon is observed for the ot
coordinates. In order to see the effect of these change
sign in the renormalization dynamics on the attractor,

l
FIG. 3. Values ofg1 as a function of the angleu, on the critical

attractor of the renormalization map.
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compare in Fig. 5 the power spectrum of the time series
g1 with that of ug1u. The second one indicates that the b
havior of ug1u is very close to quasiperiodic~with frequen-
cies 1 anda/2p), while g1 shows a broad spectrum.

A further insight into the structure of the attractor can
obtained by following the trajectories for a single initialu
and a set of different choices of the other coordinates
given ‘‘time’’ ~i.e., after a fixed number of iterations of th
map!. After the relaxation transient, one observes that
initial points fall into one of eight points of the attractor~in
the example of Ref.@18#, there are two such limiting points!.
The iteration of these eight points generates eight branc

FIG. 4. Evolution of a set of initial conditions on the critica
surface, parametrized by an angleu varying over an interval
@u1 ,u2#. We depict the projection of this set on the plane (u,g1):
~a! initial set, ~b! after 100 iterations, and~c! after 350 iterations.

FIG. 5. Power spectrum of the evolution on the nontrivial fix
set,~a! of the coordinateg1, and~b! of the absolute valuesug1u.
f
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ll

es

of the attractor that are not completely disjoint. In order
visualize these eight branches, we display in Fig. 6 the v
ues of an observableB that makes it possible to distinguis
them. A suitable choice is the weighted sum of the coor
nates ofx5(x1 , . . . ,x9)

B~x!5(
i 51

9
xi

h i
,

with

h i5 lim
N→`

1

N (
j 51

N

uxi~ j !u,

wherexi( j ) is the j th iterate of an initial condition of the
coordinatexi . These branches are related by symmetry,
described in Sec. III D.

In summary, the numerical results suggest the follow
characterization of the attractor: It is a set composed of e
branches that differ only in the signs of one or morehk ~the
amplitude of the Fourier modenk). Each of the branches ha
a dense set of discontinuities. It seems to be an examp
nine dimensions of the type of attractors described in R
@18#.

In order to characterize the singularities, we compute
correlation dimension of the attractor according to t
method developed by Grassberger and Procaccia@38# ~see
also Ref.@39#!. We did not find a clear result, but there
some evidence that the dimension has a value around 1
agreement with Figs. 3 and 6, and with the projection of
attractor on the plane (g1 ,m1) depicted in Fig. 7.

D. Symmetries of the transformation

In this paper, we have considered only even perturbatio
i.e., such that the Fourier modes are only cosine terms.
results can be extended to the more general case, inclu
noneven modesnk (k51,2,3), by the following symmetry
arguments@43,7#. These arguments also allow one to und
stand the relationship between the eight branches of the
tractor.

FIG. 6. Values of an observableB as a function ofu, on the
critical attractor: it shows the eight branches of the attractor.
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We analyze the effect of a shift of the origin of the ang
on the renormalization transformation. We denote this s
as

Tu : w°w1u.

The KAM transformation@step~1!# commutes withTu . The
action ofTu on the shift of the resonances@step~3!# is char-
acterized by the following intertwining relation@40#:

R+Tu5TÑu +R, ~3.1!

whereR denotes the renormalization transformation. App
ing this relation to the critical attractor gives the relati
between the renormalization trajectories for Hamiltonia

FIG. 7. Projection on the plane (g1 ,m1) of the critical attractor
of the renormalization map.
s

ev

et

on
ft

-

s

H(A,w) and the ones for HamiltoniansH(A,w1u). With
this type of shift, any Hamiltonian containing only the thre
modesnk , k51,2,3 ~with sine and cosine terms!, can be put
into a cosine representation. Thus the attractors for th
models are directly linked by symmetries to the attrac
found in the even case.

The eight branches of the critical attractor are mapp
into each other by symmetries of this type, realized by sh
in the origin of the angles byuk5pnk . This corresponds to
the eight possible choices of the signs of the three mode

IV. CONCLUSION

This paper provides numerical results indicating that
the spiral mean frequency vector, the critical surface of
approximate renormalization transformation is t
codimension-1 stable manifold of astrange nonchaotic at-
tractor. This feature is a consequence of the fact thatN has
two complex conjugated eigenvalues~with incommensurate
phase! which lead to a renormalization map that can be
terpreted as a quasiperiodically driven system. For frequ
cies associated with a matrixN with real eigenvalues, the
renormalization dynamics is expected to be qualitatively d
ferent. Moreover, the numerical results suggest that
renormalization transformation can be reduced to an iso
ergetically degenerate family of Hamiltonians at criticalit
These remarks give new insights applicable to the setup
systematic renormalization transformation, in the spirit
Refs.@40,8,9#.
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