270 research outputs found

    Loading a vapor cell magneto-optic trap using light-induced atom desorption

    Get PDF
    Low intensity white light was used to increase the loading rate of 87^{87}Rb atoms into a vapor cell magneto-optic trap by inducing non-thermal desorption of Rb atoms from the stainless steel walls of the vapor cell. An increased Rb partial pressure reached a new equilibrium value in less than 10 seconds after switching on the broadband light source. After the source was turned off, the partial pressure returned to its previous value in 1/e1/e times as short as 10 seconds.Comment: 7 pages, 6 figure

    Dynamics of evaporative cooling in magnetically trapped atomic hydrogen

    Full text link
    We study the evaporative cooling of magnetically trapped atomic hydrogen on the basis of the kinetic theory of a Bose gas. The dynamics of trapped atoms is described by the coupled differential equations, considering both the evaporation and dipolar spin relaxation processes. The numerical time-evolution calculations quantitatively agree with the recent experiment of Bose-Einstein condensation with atomic hydrogen. It is demonstrated that the balance between evaporative cooling and heating due to dipolar relaxation limits the number of condensates to 9x10^8 and the corresponding condensate fraction to a small value of 4% as observed experimentally.Comment: 5 pages, REVTeX, 3 eps figures, Phys. Rev. A in pres

    Scattering of light and atoms in a Fermi-Dirac gas with BCS pairing

    Full text link
    We theoretically study the optical properties of a Fermi-Dirac gas in the presence of a superfluid state. We calculate the leading quantum-statistical corrections to the standard column density result of the electric susceptibility. We also consider the Bragg diffraction of atoms by means of light-stimulated transitions of photons between two intersecting laser beams. Bardeen-Cooper-Schrieffer pairing between atoms in different internal levels magnifies incoherent scattering processes. The absorption linewidth of a Fermi-Dirac gas is broadened and shifted. Bardeen-Cooper-Schrieffer pairing introduces a collisional local-field shift that may dramatically dominate the Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static structure function may be significantly increased due to superfluidity in the nearforward scattering.Comment: 13 pages, 6 figures; to appear in PR

    The dynamics of vortex generation in superfluid 3He-B

    Full text link
    A profound change occurs in the stability of quantized vortices in externally applied flow of superfluid 3He-B at temperatures ~ 0.6 Tc, owing to the rapidly decreasing damping in vortex motion with decreasing temperature. At low damping an evolving vortex may become unstable and generate a new independent vortex loop. This single-vortex instability is the generic precursor to turbulence. We investigate the instability with non-invasive NMR measurements on a rotating cylindrical sample in the intermediate temperature regime (0.3 - 0.6) Tc. From comparisons with numerical calculations we interpret that the instability occurs at the container wall, when the vortex end moves along the wall in applied flow.Comment: revised & extended version. Journal of Low Temperature Physics, accepted (2008

    Natural Orbitals and BEC in traps, a diffusion Monte Carlo analysis

    Full text link
    We investigate the properties of hard core Bosons in harmonic traps over a wide range of densities. Bose-Einstein condensation is formulated using the one-body Density Matrix (OBDM) which is equally valid at low and high densities. The OBDM is calculated using diffusion Monte Carlo methods and it is diagonalized to obtain the "natural" single particle orbitals and their occupation, including the condensate fraction. At low Boson density, na3<10−5na^3 < 10^{-5}, where n=N/Vn = N/V and aa is the hard core diameter, the condensate is localized at the center of the trap. As na3na^3 increases, the condensate moves to the edges of the trap. At high density it is localized at the edges of the trap. At na3≀10−4na^3 \leq 10^{-4} the Gross-Pitaevskii theory of the condensate describes the whole system within 1%. At na3≈10−3na^3 \approx 10^{-3} corrections are 3% to the GP energy but 30% to the Bogoliubov prediction of the condensate depletion. At na3≳10−2na^3 \gtrsim 10^{-2}, mean field theory fails. At na3≳0.1na^3 \gtrsim 0.1, the Bosons behave more like a liquid 4^4He droplet than a trapped Boson gas.Comment: 13 pages, 14 figures, submitted Phys. Rev.

    Generation and evolution of vortex-antivortex pairs in Bose-Einstein condensates

    Full text link
    We propose a method for generating and controlling a spatially separated vortex--antivortex pair in a Bose-Einstein condensate trapped in a toroidal potential. Our simulations of the time dependent Gross-Pitaevskii equation show that in toroidal condensates vortex dynamics are different from the dynamics in the homogeneous case. Our numerical results agree well with analytical calculations using the image method. Our proposal offers an effective example of coherent generation and control of vortex dynamics in atomic condensates.Comment: 4 pages, 2 figure

    Fertility, Living Arrangements, Care and Mobility

    Get PDF
    There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed

    Isolation and characterization of two plant growth-promoting bacteria from the rhizoplane of a legume (Lupinus albescens) in sandy soil

    Get PDF
    Duas linhagens bacterianas que apresentaram amplificação de parte do gene nifH, RP1p e RP2p, pertencentes aos gĂȘneros Enterobacter e Serratia, foram isoladas do rizoplano de Lupinus albescens. Essas bactĂ©rias sĂŁo Gram-negativas, com formato de bastonete, mĂłveis, anaerĂłbias facultativas e apresentam multiplicação rĂĄpida, com colĂŽnias alcançando diĂąmetros de 3–4 mm em 24 h de incubação a 28 ÂșC. RP1p e RP2p tambĂ©m foram capazes de multiplicação em temperaturas elevadas, como 40 ÂșC, na presença de alta concentração de NaCl (2–3 % v/v) e em valores de pH que variaram de 4 a 10. A linhagem RP1p foi capaz de utilizar 10 das 14 fontes de carbono avaliadas, enquanto a linhagem RP2p utilizou nove. Os isolados produziram siderĂłforos e compostos indĂłlicos, mas foram incapazes de solubilizar fosfatos. A inoculação de L. albescens com as linhagens RP1p e RP2p resultou em aumento significativo do peso das plantas secas, o que demonstra que essas bactĂ©rias apresentam propriedades que favorecem o crescimento vegetal.Two bacterial strains that amplified part of the nifH gene, RP1p and RP2p, belonging to the genus Enterobacter and Serratia, were isolated from the rhizoplane of Lupinus albescens. These bacteria are Gram-negative, rod-shaped, motile, facultative anaerobic, and fast-growing; the colonies reach diameters of 3–4 mm within 24 h of incubation at 28 °C. The bacteria were also able to grow at temperatures as high as 40 °C, in the presence of high (2–3 % w/v) NaCl concentrations and pH 4 -10. Strain RP1p was able to utilize 10 of 14 C sources, while RP2p utilized nine. The isolates produced siderophores and indolic compounds, but none of them was able to solubilize phosphate. Inoculation of L. albescens with RP1p and RP2p strains resulted in a significant increase in plant dry matter, indicating the plant-growth-promoting abilities of these bacteria
    • 

    corecore