25 research outputs found

    Superluminal Signals: Causal Loop Paradoxes Revisited

    Get PDF
    Recent results demonstrating superluminal group velocities and tachyonic dispersion relations reopen the question of superluminal signals and causal loop paradoxes. The sense in which superluminal signals are permitted is explained in terms of pulse reshaping, and the self-consistent behavior which prevents causal loop paradoxes is illustrated by an explicit example.Comment: 6 pages, 3 figure

    Which group velocity of light in a dispersive medium?

    Full text link
    The interaction between a light pulse, traveling in air, and a generic linear, non-absorbing and dispersive structure is analyzed. It is shown that energy conservation imposes a constraint between the group velocities of the transmitted and reflected light pulses. It follows that the two fields propagate with group velocities depending on the dispersive properties of the environment (air) and on the transmission properties of the optical structure, and are one faster and the other slower than the incident field. In other words, the group velocity of a light pulse in a dispersive medium is reminiscent of previous interactions. One example is discussed in detail.Comment: To be submitted on PR

    Scattering of light and atoms in a Fermi-Dirac gas with BCS pairing

    Full text link
    We theoretically study the optical properties of a Fermi-Dirac gas in the presence of a superfluid state. We calculate the leading quantum-statistical corrections to the standard column density result of the electric susceptibility. We also consider the Bragg diffraction of atoms by means of light-stimulated transitions of photons between two intersecting laser beams. Bardeen-Cooper-Schrieffer pairing between atoms in different internal levels magnifies incoherent scattering processes. The absorption linewidth of a Fermi-Dirac gas is broadened and shifted. Bardeen-Cooper-Schrieffer pairing introduces a collisional local-field shift that may dramatically dominate the Lorentz-Lorenz shift. For the case of the Bragg spectroscopy the static structure function may be significantly increased due to superfluidity in the nearforward scattering.Comment: 13 pages, 6 figures; to appear in PR

    A Knob for Changing Light Propagation from Subluminal to Superluminal

    Get PDF
    We show how the application of a coupling field connecting the two lower metastable states of a lambda-system can produce a variety of new results on the propagation of a weak electromagnetic pulse. In principle the light propagation can be changed from subluminal to superluminal. The negative group index results from the regions of anomalous dispersion and gain in susceptibility.Comment: 6 pages,5 figures, typed in RevTeX, accepted in Phys. Rev.

    Feshbach resonances in a quasi-2D atomic gas

    Full text link
    Strongly confining an ultracold atomic gas in one direction to create a quasi-2D system alters the scattering properties of this gas. We investigate the effects of confinement on Feshbach scattering resonances and show that strong confinement results in a shift in the position of the Feshbach resonance as a function of the magnetic field. This shift, as well as the change of the width of the resonance, are computed. We find that the resonance is strongly damped in the thermal gas, but in the condensate the resonance remains sharp due to many-body effects. We introduce a 2D model system, suited for the study of resonant superfluidity, and having the same scattering properties as the tightly confined real system near a Feshbach resonance. Exact relations are derived between measurable quantities and the model parameters.Comment: 8 pages, 2 figure

    Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps

    Full text link
    We describe a model for s-wave collisions between ground state atoms in optical lattices, considering especially the limits of quasi-one and two dimensional axisymmetric harmonic confinement. When the atomic interactions are modelled by an s-wave Fermi-pseudopotential, the relative motion energy eigenvalues can easily be obtained. The results show that except for a bound state, the trap eigenvalues are consistent with one- and two- dimensional scattering with renormalized scattering amplitudes. For absolute scattering lengths large compared with the tightest trap width, our model predicts a novel bound state of low energy and nearly-isotropic wavefunction extending on the order of the tightest trap width.Comment: 9 pages, 8 figures; submitted to Phys. Rev.

    Interferometric detection of a single vortex in a dilute Bose-Einstein condensate

    Full text link
    Using two radio frequency pulses separated in time we perform an amplitude division interference experiment on a rubidium Bose-Einstein condensate. The presence of a quantized vortex, which is nucleated by stirring the condensate with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure

    Superluminal optical pulse propagation in nonlinear coherent media

    Get PDF
    The propagation of light-pulse with negative group-velocity in a nonlinear medium is studied theoretically. We show that the necessary conditions for these effects to be observable are realized in a three-level Λ\Lambda-system interacting with a linearly polarized laser beam in the presence of a static magnetic field. In low power regime, when all other nonlinear processes are negligible, the light-induced Zeeman coherence cancels the resonant absorption of the medium almost completely, but preserves the dispersion anomalous and very high. As a result, a superluminal light pulse propagation can be observed in the sense that the peak of the transmitted pulse exits the medium before the peak of the incident pulse enters. There is no violation of causality and energy conservation. Moreover, the superluminal effects are prominently manifested in the reshaping of pulse, which is caused by the intensity-dependent pulse velocity. Unlike the shock wave formation in a nonlinear medium with normal dispersion, here, the self-steepening of the pulse trailing edge takes place due to the fact that the more intense parts of the pulse travel slower. The predicted effect can be easily observed in the well known schemes employed for studying of nonlinear magneto-optical rotation. The upper bound of sample length is found from the criterion that the pulse self-steepening and group-advance time are observable without pulse distortion caused by the group-velocity dispersion.Comment: 16 pages, 7 figure

    Probing semiclassical analogue gravity in Bose--Einstein condensates with widely tunable interactions

    Full text link
    Bose-Einstein condensates (BEC) have recently been the subject of considerable study as possible analogue models of general relativity. In particular it was shown that the propagation of phase perturbations in a BEC can, under certain conditions, closely mimic the dynamics of scalar quantum fields in curved spacetimes. In two previous articles [gr-qc/0110036, gr-qc/0305061] we noted that a varying scattering length in the BEC corresponds to a varying speed of light in the ``effective metric''. Recent experiments have indeed achieved a controlled tuning of the scattering length in Rubidium 85. In this article we shall discuss the prospects for the use of this particular experimental effect to test some of the predictions of semiclassical quantum gravity, for instance, particle production in an expanding universe. We stress that these effects are generally much larger than the Hawking radiation expected from causal horizons, and so there are much better chances for their detection in the near future.Comment: 18 pages; uses revtex4. V2: Added brief discussion of "Bose-Nova" phenomenon, and appropriate reference

    Quantum Computing with Atomic Josephson Junction Arrays

    Full text link
    We present a quantum computing scheme with atomic Josephson junction arrays. The system consists of a small number of atoms with three internal states and trapped in a far-off resonant optical lattice. Raman lasers provide the "Josephson" tunneling, and the collision interaction between atoms represent the "capacitive" couplings between the modes. The qubit states are collective states of the atoms with opposite persistent currents. This system is closely analogous to the superconducting flux qubit. Single qubit quantum logic gates are performed by modulating the Raman couplings, while two-qubit gates result from a tunnel coupling between neighboring wells. Readout is achieved by tuning the Raman coupling adiabatically between the Josephson regime to the Rabi regime, followed by a detection of atoms in internal electronic states. Decoherence mechanisms are studied in detail promising a high ratio between the decoherence time and the gate operation time.Comment: 7 figure
    corecore