19 research outputs found

    Fusion-reactor plasmas with polarized nuclei

    No full text
    Nuclear fusion rates can be enhanced or suppressed by polarization of the reacting nuclei. In a magnetic fusion reactor, the depolarization time is estimated to be longer than the reaction time

    Propagation of ion beams through a tenuous magnetized plasma

    No full text
    When an ion beam is propagated through a plasma, the question of charge neutralization is critical to its propagation. We consider such a problem where the plasma is magnetized with magnetic field perpendicular to the beam. The plasma-number density and beam-number density are assumed comparable. We reduce the problem to a two-dimensional model, which we solve. The solution suggests that it should be possible to attain charge neutralization if the beam density is properly varied along itself

    Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    No full text
    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescription of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.readme and data file
    corecore