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Abstract

We describe a scheme for obtaining very short wavelengths (A ~ 104) in
recombination lasers. The rapid cooling rates necessary to achieve population
inversion during recombination are attained by adiabatic expansion of sub
micron spheres. The lasing region is made up of many such spheres. The
spheres are heated impulsively by a powerful picosecond laser. First, they
ionize, then as they expand, they cool and recombine. We have calculated the
optimum sphere size and initial temperature for maximum gain in the n = 3
to n = 2 transition of hydrogen-like ions of elements with atomic numbers,
Z, between 10 and 30. Gain of about 10%cm™! is calculated in aluminum at
38.84. Gain rapidly decreases with Z so that gain in titanium at 13.64 is
about 40cm~!, We have calculated the required pump laser intensity and
found it to be attainable with current lasers. The propagation of the pump
through the “gas” of spheres is considered and the problems arising from
pump scattering by the spheres are discussed.
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I. Introduction

X-Ray laser development is proceeding at a rapid rate. Since the demon-
stration of lasing action at X-ray wavelengths in 1984!-3 there has been steady
progress in many areas, including achievement of iiicreased gain-length prod-
ucts and progression to shorter wavelengths. The future holds the promise
of widespread application of these systems to areas as dwerse as microlithog-
raphy, microscopy and holography.*

We propose here a novel method of achieving recombination-pumped gain
at lasing wavelengths of order 104, The laser is similar to other recombination-
pumped devices that operate successfully at longer wavelengths, in so far as a
high temperature plasma is created by irradiation of a target medium with a
so-called pump laser. Subsequently, the nonequilibrium conditions required
for lasing are achieved by cooling the plasma sufficiently rapidly to reach a
“superionized” state - one in which the ionization stage exceeds that achiev-
able under steady-state conditions at the ambient density and temperature.

Production of the strongly nonequilibrium conditions required for gain
in recombination-pumped X-ray lasers becomes problematic at short wave-
lengths. A picosecond cooling rate is desirable for lasing at wavelengths
approaching 10A4. This rate can be achieved with adiabatic expansion of
sub-micron sized targets. The rate cannot be achieved with radiative cooling
in a single-species plasma. The fastest adiabatic cooling rate is achieved in
a spherical expansion (three dimensional expansions cool faster than two or
one dimensional expansions). There are, in fact, three main reasons why we
expect small spherical targets to be optimal. First, as we have said, they have
the highest adiabatic cooling rates and therefore the highest gains. Second,
small spheres have a large surface area to volume ratio and thus require less
pump laser intensity to heat. Third, sub-micron spheres are relatively easy
to fabricate compared to, for instance, sub-micron fibers.

In Section II we calculate gain in expanding isothermal spheres. The
isothermal assumption is justified by the short thermal conduction time.
A simple similarity model of the hydrodynamic expansion and collisional
radiative model of the atomic physics are used. The initial temperature, 7},
the initial radius, Ry, and the atomic number, Z, of the sphere are inputs to
our calculation. We calculate the gain, gs0, in the n = 3 to n = 2 transition
of the hydrogen-like ion. By varying T, and Ry, we find the optimum values
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for maximum gain. The maximum of g3, for a given element, 7, is plotted
in Figure 7. The pump laser must heat the sphere to the initial temperature
in a fraction of the expansion time—i.e. in a fraction of a picosecond. The
required pump laser intensity is calculated to be attainable with currently
available sub-picosecond lasers (see Figure 10).

While spherical targets provide an ideal cooling geometry, they don't, of
course, provide an ideal lasing geometry. The lasing region should be long
enough to provide a gain length product of perhaps ten. It must also be
narrow enough to be optically thin to the “dump” transition for the lower
lasing level which, in our case, is the n = 2 to n = 1 transition. In aluminum
these requirements yield the optimnm lasing region to be about 100 microns
long and 2 microns wide. This geometry can be accomplished with multiple
sub-micron targets, “microspheres,” suspended in a vacuum or low density
gaseous medium. Perhaps the simplest method of suspending the spheres
is to give them sufficient kinetic energy that their pressure supports them
against gravity. The “gas” of microspheres is arranged to have a mean mass
density equal to the mean mass density of a single microsphere at the time of
peak gain. Clearly the optimum size of the microspheres and their spacing
can be obtained from the single sphere calculations. The microsphere gas is
placed in the focus of the pump laser. The focal region defines the lasing
geometry, see Figure 1. The pump laser will propagate in the microsphere
gas with some scattering and absorption. At high Z the scattering makes
the simple pumping scheme of Figure 1 inappropriate (see Section III E).
Other pumping geometries are therefore suggested for high Z. Thus, with
the appropriate pump intensity, spheres in the focal region are heated to
the optimum temperature for gain. The heated spheres expand and fill the
space, forming a relatively uniform high gain region. Our design raises the

possibility of efficient generation of sho” ¢ wavelengths than are currently
available.

In Section II, we consider the evolution of a single sphere of initial temper-
ature Ty and radius Ry. The hydrodynamic similasity model of the expansion
is discussed in Section IT A. In Section II B, we present a simple model of
the atomic physics to aid understanding. The full computational model is
presented in Section II C. In Section III, we discuss he heating by the pump
laser and the propagation of the pump laser in the microsphere gas. The
isothermal assumption is justified in Section III A. The absorption and scat-
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tering of the pump laser by the spheres is calculated in Section III B. In Sec-
tion III C, we calculate the required pump intensity. The physical constraints
on the size and shape of the lasing region are calculated in Section III D. Fi-
nally we calculate the propagation of the pump laser in Section III E. In the
conclusion we discuss future work and other applications of the microsphere
“ga;S” .

II. Gain in a Single Sphere

In this section we consider the evolution of a single sphere and the gain
achieved in the evolution. We shall calculate the optimum values of the
initial sphere radius R, and initial temperature T for maximum gain. The
gain, gso, in the n = 3 to n = 2 transition in hydrogen-like ions is calculated.
In Section A we consider the hydrodynamic evolution of a sphere (which
fortunately decouples from the atomic physics). A simple analytic calculation
of the atomic physics is presented in Section B. This calculation is not
quantitatively accurate but it does show the scaling trends and it does aid cur
understanding. Results from the model are summarized in Figure 3. There
we plot the maximum value of g3; the values of Ty and Ry which maximize
gain, all as a function of Z. In Section C we present the computational model
and our results, which are displayed in Figures 5-8.

A. Hydrodynamic evolution of Microsphere

The objective is to heat the sphere of radius R, to a uniform temperature
Ty - which for now we specify only as being comparable to the ionization
potential of that ion stage which will subsequently lase — in a time short
compared to the disassembly time Cs/R,. We shall be dealing with fully
stripped ions and hydrogen-like ions with atomic numbers, Z, greater than
10. The initial sound speed, C'y, is therefore given by Cs = (ZTy/2M)Y*
where M is the mass of the ion. The electron density in a solid (~ 10* cm™?)
greatly exceeds the critical density, where the laser freqmency w equals the
local electron plasma frequency wy,, for currently available lasers of the re-
quired intensity and pulse duration (n, ~ 10?! — 10**cm™3). Additionally,
although the optimal sphere radius can be substantially smaller than the
wavelength of the pump laser, it typically greatly exceeds the collisionless
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skin depth ¢/wp.. Therefore, the pump laser deposits energy at the surface
of the sphere. Thc pump intensity required to deposit this energy is con-
siderea in Section III C. If the sphere is too large, the time for thermal
diffusion from the heated surface to the center will exceed the disassembly
time, with the result that the core will remain cold and relatively weakly
iomized. In Section III A we show that the isothermal assumption holds for
the spheres we consider. Cold matter will absorb the X-rays by bound-free
transitions.® It is therefore desirable to keep the lasing medium relatively
isothermal. The atoms are ionized to the hydrogen-like stages very rapidly.
In modeling the hydrodynamic expansion we make use of the large value of Z.
The change in electron density due to the ionization from the hydrogen-like
state is neglected since it produces a relative density change of order Z 1,
We also neglect the energy involved in ionization, recombination and atomic
transitions, since it is typically a fraction Z~! of the energy in free electrons.
These approximations allow us to decouple the hydrodynamic problem from
the atomic physics. If the plasma is allowed to freely expand into vacuum,
then, after it increases its dimensions to a size substantially larger than Ry,
its further evolution will be well described by a similarity solution of the
hydrodynamic equations.” Within this model, to a good approximation, the
current plasma size R(t), density n(t) = n(r = 0,t) and temperature T'(¢)
are determined in terms of their corresponding initial values Ry, ng, and T
by the simple relations:

d?'R(t) CS 2
= =7 (1a)
Ry \Ar
T(t) =Tp - (m) : (1b)
n(t) =ng- <—R'O“>A" ) (1c)

and where Ap, (resp. \,) takes on the value 2d/3, (resp. d) with d = 1,2,3
in the case of planar, cylindrical and spherical geometry, respectively. From
Eq. (1a), we see that for R(t) >> Ry, we have the simple result R(t) ~
R,Cst. Eq. (1b) follows from the conservation of entropy in adiabatic ex-
pansion and Eq. (1c) follows from the conservation of particles.

Having obtained the density evolution at the symmetry point r = 0, the
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off-axis density follows from the similarity form

n(r, t) = n(t)exp{—'—;-[——%i]z} , (2)

B. Analytic Model

In this section we will examine a simple analytic model of the atomic
physics in an expanding sphere. (The quantitative results of this section
differ from our more detailed numerical results but the qualitative features
are correct.) Let us consider the origin of the sphere only and let us take the
long time approximation to R(t), i.e., R(t) =~ Ry + Cst. We normalize Z to
ten (since we are interested in Z between ten and thirty), Tj to the ionization
potential for the hydrogen-like ion, R to Ry, Ry to 107° cm and the initial
density, ng to 10% cm™3. Thus Z = 10Z, Ty(eV) = 1360Z%*Ty, ¢ = R/Ry,
Ry(cm) = 107°Ry, and ny(cm™3) = 10%*n,. We also take the atomic mass
number to be 2Z. The lasing wavelength in these units is \go( 4) = 65.6/ 2.
In normalized units the expansion rate is,

dr _ Cso 122\/TT0 -1
7R, =2.610 2} sec . (3)

During the early stages of the expansion we require ionization to dominate
so that a population of fully stripped ions is obtained. The initial electron
temperature must therefore be comparable to the ionization potential of the
hydrogen-like ion (i.e. Ty ~ O(1)). At this temperature ionization to the
hydrogen-like state is very rapid. We shall therefore assume (both for the
analytic and numerical work) that initially all atoms are in the ground state
of the hydrogen-like ion.

Our simplified model for the hydrogen-like ion is illustrated in Figure 2.
The model consists of three levels in the hydrogen-like ion and the fully
stripped ion. The n = 1 ground state has the fractional population n,
the n = 2 and n = 3 excited levels have fractional populations n, and
ny respectively and the fully stripped ion has a fractional population n...
Clearly, ny + no +n3 + n = 1.

The fractional populations of the excited states, no and ng, are typically
much smaller than the fractional populations in the ground state n, and fully
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stripped state n.. This is just a result of the fact that the collisional sources
for these levels are typically smaller than the radiative decay rates. The
analytic model contains the following transition rates between levels n = 1,
n = 2, and n = 3: The collisional excitation rate between n = 1 and n = 2,
denoted C1g, the radiative transition rate between n = 3 and n = 2 (Aj2), the
radiative transition rate between n = 2 and n = 1 (A4y;) and the collisional
deexcitation rate between n = 3 and n = 2 (C3;). The collisional excitation
from level n = 2 is ignored as no << 1 and the collisional deexcitation rate
from n = 2 is unimportant compared to the radiative decay. We consider
single step ionization from the n = 1 level only. Ionization from n = 2
and n = 3 is small when the radiative rates dominate and nq, nj are pop-
ulated less than the thermal equilibrium value. At the densities of interest
(n ~ 10%* —10%* cm~3) three body recombination dominates radiative recom-
bination. The electrons preferentially recombine into the upper levels of the
atom. The upper levels are approximately in Boltzmann / Saha equlibrium
as the collisional transition rates are high. The lower levels, however, are
dominated by radiative decay. One develops a picture of a recombining elec-
tron diffusing (random walking) through the upper levels of the atom until
it reaches some critical lower level. At this critical level n, radiative decay
dominates and the electron rapidly decays to the ground state. Obviously
no population inversion can occur in levels above n, because they are in
Saha equlibrium. The diffusional flux of electrons through the upper levels
has been calculated by many authors (see Zeldovich,'® Pert.') to be propor-
tional to Z°n2/T%2, In our normalized units this yields the recombination
rate due to this process,

Ry =1310% =0 —g% sec™! (4)
A

where we have used Eqs. (1b) and (lc) for T'(z) and n(z). We assume R.
gives the net recombination rate and that a fraction b of this rate gives the
flux of electrons from n > 3 levels into the n = 3 level. Thus we have model. ..
the effect of the levels with n > 3 on the source for level n = 3. Note direct
recombination into the n = 3 level without passing through the higher n
states is relatively unimportant.

We will assume that the initial electron temperature is smaller than the
n = 2 ton = 1 transition energy. The collisional rates C'; and C'|» can be
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calculated using the cross sections for ionization and excitation at threshold.
These cross sections are independent of energy and proportional to Z~%.
The rates Ci and Cig are obtained by averaging ov over the maxwellian
(for more complete approximations see Keane's thesis'®)., Thus in normalized

units

0 2

Cloo 2 20.6 - 10122 -%exp(_%_) sec™! (5)
Zg TO z 0
g T 1 3 z?

Cro 30 1020 " exp (=22 ) sec™! | 6)

Z_(I)S\/E_"—D-.E“ 47T,
The n = 3 to n = 2 collisional deexcitation, Cjz, is obtained from Ca; by
detailed balance. Thus we find

ng ~ 25 - 1012‘_'_'-?"(),.-—::‘}5 S@C—‘1 . (7)
23T ®

The mean radiative rates'” are

Agy = 4.7-101274 sec™! | (8)

Agp = 0.43 . 10*%7% sec™! | (9)
and

A3y = .55-10"2Z% sec™! | (10)

For values of Z of interest (Z ~ 1.5) the radiative rates Asy, A3 and Aqp are
larger than the expansion rate and the ionization and recombination rates.
The populations of the n = 3 and n = 2 levels are therefore in quasi-steady
state, i.e.,

R
n3 =~ bn. - , , 11
(Asg + Az + Cyo) (11)
1
o 1 (A(}Qng + Cm‘nl) . (l?.)
Ag
The ionization recombination balance in the model is
dT“
—= = RN — Clacn . 13
dl" . 1o ftl ( )
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Since ng, ng << N, Moo, We Set Ny = 1 — ny and we use Eq. (3) to replace
d/dt = (dz/dt)d/dz. Thus,

d’nm —O 05 R()n[) 3 +- 8 ~()R(J 1 172

o 75 Vs F 50 2exp(—i.,;)(l = Mo ) - (14)

Typically we shall be interested in situations where T, ~ O(1) (although
we have assumed T, < 1 to derive (i and Cpp) and Ry ~ O(1). Clearly
ionization dominates Eq. (14) at 2 = 1. As the sphere expands (z increases)
the ionization rate drops rapidly and the recombination rate rises rapidly.
Thus the evolution splits rather naturally into two phases — the ionization
phase and the recombination phase. The total fractional ionization after the
ionization phase, nl , can be estimated by ignoring recombination over this
time. Thus

~ 1 -exp(—~a) , (15)

ni,
where )
flo Ry / 1 @ fio Ko L .
8TUZ4 mzexp( To) ~ 4= =7 XP 7 (16)

and we have evaluated o in the limit Ty < 1. Physically o represents the
amount of ionization in the first expansion time. When R, or T} is small the
sphere expands and cools before significant ionization occurs. During the
recombination phase typically when z >> T, we may ignore ionization in
Eq. (14) and obtain,

1 z!
Moo ~ Ny €Xp —0F—
~ 6Xp =0 n
where R
on -
5 =005t (17)

is roughly the amount of recombination in the first expansion time.

There is, in fact, a third phase in the evolution where ionization and
recombination balance and the left hand side of Eq. (14) is negligible (the
quasi-static situtation), This occurs for parameters of interest when fz* >>
1 and n., is small. In the quasi-static phase

_H(z)
1+ H(z)

Moo ™~

(18)
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where

)

l’“

To) '

Ag we shall see, gain occurs durmg the reco_mbmatlon phase and not during
this later steady state phase. If 3 > 1 (Ty << 1l or Ry >> 1) then the

recombination phase does not exist — the initial ionization phase takes the
ion directly into the quasi-static phase.

The gain per unit length, g,y for a transition from level u to level | is

A

H(z) = IGOT“ 43 : = exp(—

Gu = Gn, A“/{ Ay My — n/%’f (19)
where
. Loy
G= 87rc(‘27r) ’ (20)
and the linewidth
AN = A CCS , (21)

is due to the dopplér width caused by the expansion of the spheres? In
our case, the degeneracies g; = j%. Using Egs. (11) and (12) and the rates,
Egs. (4) - (10) we obtain,

T b’ N
gz ~ 1.6 10° L 29
2 28T 3 276 Qu (22)
857, 1 31:'2
e e — X (— = = (1 =
Rt )

The first term in the braces is essentially proportional to the recombination
rate, where the factor

(5071() 1

) (23)

is the “quenching coefficient”, defined as the ratio of the total deexcitation
rate (collisional pus radiative) to the radiative decay rate of the upper lasing
level. The second term in Eq. (22) is the excitation from n = 1 to n = 2

populating the n = 2 level and lowering the gain. For large T, and small 2 the
second term dominates and the gain is negative. Since gzo is a monotonically
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increasing function of n.,, and z it must increase during the ionization phase
when n, and z are increasing. Substituting Eq. (18) into Eq. (22) we see
that the gain is always negative in the quasi-static phase.

We have calculated (numerically) the maximum value of g3; from Eq. (22),
maximising with respect to z, 7y and Ry. In Figure 3 we plot the maximum
g32 ag a function of Z, together with the values of Ry and T, which optimize
g32. In these computations, we estimate b by

Ay -+ Cyg
(Agz + Cy3 + Agz + Aar)

byr =

which is the branching ratio into level 3 from level 4. The maximum g;;
given by this model exceeds the numerical result of Section II C by a factor
of ten for Z = 20. However, since the model is rather simplified, numerical
accuracy is not expected.

A number of qualitative features can be understood from this model.
First let us consider the steep inverse scaling of g3» with Z. At high Z the
collisional rates are small and therefore ny ~ [Ro/(A3z2 + A31)|ns. Using
ni x Z71 AN « AZ, A x Z7? and F, « Z7° and setting ny ~ 0 and
N ~ 1 we obtain from Eq. (22) g32 « Z~'*. At low Z collisional deexcitation
dominates the decay from the n = 3 level (Q, >> 1), thus n3 ~ (R /C32)n
and g32 ~ Z~7. Note we have implicitly assumed that T, and n.. do not scale
significanily with Z; their calculated scalings are indeed mild. Clearly the
dominant reasons for the strong decrease in gain with increasing Z are the
scalings of R, and A.

The existence of a maximum gj» can be understood, again qualitatively,
from our model. First consider the initial temperature, Ty. If Ty is small the
amount of ionization and therefore gain is small. Conversely if T}, is large
the recombination rate is always small, the n = 1 to n = 2 excitation rate
is large and the gain is consequently small. Clearly an optimal temperature
exists. Now consider the initial radius, R,. If R is small the sphere expands
very rapidly and cools before significant ionization takes place. However if
Ry is large the cooling is slow and the atom is in a quasi-equilibrium where
n =1 to n = 2 excitation populates the n = 2 level and shuts off the gain.
Again we expect an optimum R,,. These opposing tendencies are sketched in
Figure 4.

The advantages of spherical expansion are also apparent from our model.
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Clearly we hope to achieve significant initial ionization but insignificant ion-
ization during the recombination phase. Thus one wishes to have an ion-
ization rate and an n = 1 to n = 2 excitation rate that decrease rapidly
with z and a recombination rate that increases rapidly with z. Now consider
three types of symmetrical expansion, planar (d = 1), cylindrical (d = 2)
and spherical (d = 3). The n =1 to n = 2 excitation rate is proportional to
2~ 243 exp(—3x°%3/4T,) and therefore it decreases most rapidly with z when
d = 3, i.e., in spherical expansion. The ionization rate behaves similarly.
The recombination rate is proportional to z¢ and therefore increases most
rapidly (with z) when d = 3. Thus spherical expansion is preferable.

C. Numerical Model

After a discussion of the numerical method, we examine in some detail the
time evolution of a single sphere. This is followed by a discussion of the opti-
mization of gain with respect to initial radius R, and temperature Ty, given
Z. Finally, the variation of optimized gain and other critical quantitites,
such as the optical depth of the dump transition, with Z are presented.

1. Numerical Method

In the gereral case, the evolution of the atomic states and radiation fields
must be kept on a par with that of the hydrodynamic variables. Fortunately,
for our system the power density associated with atomic excitation and ion-
ization is small compared to the cooling power resulting from expansion. As
we stated in Section II A, this is a consequence of the large Z. This circum-
stance allows an accurate computation of the evolution in two independent
steps. First, the hydrodynamic evolution is computed neglecting the power
flow into internal atomic states. Then the density and temperature so com-
puted enter as time dependent parameters in the computation of the atomic
state.

Given the time evolution of the fiuid variables, the evolution of the frac-
tional populations of the ground and excited states of the hydrogen-like ion,
and of the fully-stripped ion are computed in a Lagrangian frame

dr ,
— '2(_
dt v (24)
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with V(r(t), t), the local flow velocity. We neglect ionization from and recom-
bination to lower ionization stages on the grounds that during the heating
phase, collisional ionization from He-like ions will occur on a much shorter
time scale whenever significant gain is achieved, and that during the re-
combination pliase, recombination into He-like ions will not affect the gain
calculations. With these remarks, the governing equations for the bound
state fractional populations are

dt
Here
Sj = LysjAjng — Ly Ajpmny (2v)

is the net spontaneous transition rate into level j, expressed in terms of the
individual rates 4,/ from j' to j,

Cj = nelZjgj(Cpjng = Cyymyg)] (27)

is the net rate of collisional excitation into level j from expressed in terms of
the rate coefficient C;; from j to j',

[j = nen,-C’jco y (28)

is the ionization rate from level j, expressed in terms of the ionization rate
coefficient C'j, and

Rj = nen‘g(neﬁtb‘j + a'r'ad.j) ) (29)

is the sum of the three-body and radiative recombination rates (., and
Qrad,;, Tespectively) into level j. All sums over bound states are up to a level
[ which is varied to check convergence. The rate coefficents are those given
by Keane.!®

The equation for che evolution of the fractional population of fully stripped
ions is
AN~

— — {.

where
[ =351 (31)



is the total rate of collisional ionization from, and
Re=%,R; | ‘ (32)

is the sumn of recombination rates into, all bonund states. By virtue of the
relations Eqs. (31), (32) and the additional evident relation

£,C;=0 , (33)

we have that the total population

= LNy + N (34)
is onserved, ;
L Tb4
— =0 . 35
m (35)

By definition ny = 1.

There is a large variation in the magnitude of the rate coefficients in the
set of equations (25) ~nd (30), both with changes in temperature and in
quantum number. This variation could be expected to cause difficulty in a
numerical solution, but the set has been found to be amenable to accurate
solution with standard scientific library algorithms.!® The chosen algorithm
conserves density to machine roundoff (101°).

Once the fractional populations are computed, the gain at line center for
the 3 to 2 transition follows immediately from Eqs. (19) - (21),

2. Time Evolution

As an illustrative example, we preseni results for the time evolution of a
Titanium sphere (Z = 22) in Figure 5a-e. The initial radius of the sphere
Ry = 2.17 - 10 %¢cm. Tt is assumed initially at rest R(t = 0) = 0. The
electron density on axis, n(t) = n.(r = 0,t) is initially set to 1 - 10**cm™?,
essentially solid density. The sphere is assumed impulsively heated to an
electron temperature Ty = 3.1+ 10%eV, equal to .47 of the ionization poten-
tial of the hydrogen-like ion. The sphere is then assumed to freely expand
into vacuum. The evolution of the sphere size R(t) is obtained by solving
Eq. (1a). T'(t) and n(t) are then obtained by evaluation of Egs. (1b) and (lc¢),
respectively. All three are plotted in Figure 5a. We note there the decrease
of T'(t) by more than a factor of 9 in 1.5 psec.
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Given the hydrodynamic evolution, the state populations are then com-
puted as described in Section II C 1. We have found that inclusion of seven
excited states, with principal quantum numbers n = 2,...,8, adequately
describes the hydrogen-like system for these purposes. This was contirmed
in two ways: First sensitivity of computed gain to changes was shown to be
small. Second, during the interesting time interval, the populations of all but
the first 4 or so levels were seen to be quite close to Saha quilibirium (ie.,
within ~ 5%) with the free electron - fully stripped ion populations. The
evolution of the fractional population of the ground state of the hydrogen-like
ion, n, and of the line-center gain at » = 0, gso are presented in Figure 5b.
[onization proceeds to a level of 12% in 320 fsec, followed by recombination
with an effective rate of about 1.2 1012 sec™!. Upon onset of recombination,
the gain rises rapidly to 38.3 cm~! at 860 fsec and then decays at a rate com-
parable to the fully-stripped population. Several characteristic features of
these profiles persists through our scans in Ry, Ty and Z. First, the width of
the gain profile is comparable to the delay in its onset after impulsive heat-
ing. This has the important consequence that, in practice, producing overlap
amongst the gain profiles of an ensemble of similar spheres is readily achiev-
able. Second, especially at higher Z's (say above 15) the optimal maximum
fractional ionization of the hydrogen-like ion is much less than unity (as was
assumed in the analysis of Section IT B) . We find that for such Z values, if
ionization fractions of order unity are achieved, then recombination induced
gain is much less than optimal.

The fractional populations of the upper and lower lasing levels,nj, resp.,
na, are shown in Figure 5c. Again, consistent with the assumptions of the
collisional-radiative model,'? and with the neglect of effects of doubly-excited
states, fractional excitations are small.

Further diagnostics arc presented in Figure 5d. There the line-center
optical depth for the dump transisiton, defined here as T = gio(r = 0,¢) -
R(t), although several initially is seen to drop to .87 at peak gain. Similarly,
the quenching coeflicient at r = 0,

1

Q) = Ep [ne(0,8)Caa + Ag2] (36)

[3

drops to .46 at peak gain. Another potential gain spoiler, excitation of level
2 from the ground state is plotted there as well. The relative excitation
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coefficient represented by

is seen to drop to .11 at peak gain.

We remark that separate computations of gain off-axis (r # 0) show
that, typically, regions of positive gain extend out to radii several times R(¢)
during the time interval of appreciable gain on axis (r = 0). This observation
indicates that the total gain per sphere, G(t) = 2 [;° g(r,t) dr, is expected to
be positive when the gain at r = 0 is. Additionally, we have found that G is
well-represented (to factors of order unity) by g(r =0, t)- R(t).

3. Optimization

Wit.in our model the evolution is completely characterized by the pa-
rameters Ry, Ty, and Z. Optimization of peak gain with respect to (R, Tp)
for a given Z and determination sensitivity of the gain profile to deviations
from optimum conditions have been carried out by computing on-axis evo-
lution for a set of initial condition (Ry,Ty). As an example, the results for
Titanium are shown in Figure 6. A single maximum in the peak gain of
38.3cm™} is achieved for 2.17-107%cm, 3.1-10%eV. As predicted by the an-
alytic model, we observe the competition between insufficient ionization for
low initial temperatures and/or radii, and insufficiently rapid recombination
at large initial temperatures and/or radii.

4, Variation with Atomic Number

The optimization computations of the previous section have been repreated
For each Z in the range (Z = 10, A3y = 65.64) to (Z = 30, \32 = 7.294) The
results are presented in Figure 7a-d. In all cases, the initial electron density
was taken to be 10* cm~. Note that since gain scales like the initial density
cubed we have not considered spheres of lower initial density. Figures 8a-d
give various important quantities at the time t* of peak gain for each 7.
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III. Heating and Pump laser Propagation

In this section we consider the requirments for a pump laser. In Subsec-
tion A we show that the tynical thermal conduction : me is short and that
the isothermal assumption is good. We obtain the scattering and absorption
cross sections for the spheres in Subsecticn B. The pump laser intensity re-
quirements are calculated, and shown to be attainble with existing lasers in
Subsection C. The “dump transition” from level n = 2 to n = 1 must be
optically thin (we assumed that it was so in Section II) otherwise the popu-
lation of the n = 2 level is large and the gain is negative. In Subsection D we
discuss how this requirement limits the width of the lasing medium. Finally
in Subsection E we discuss the pump propagation in the “gas” of micro-
spheres and show that scattering of the pump light is problematic. We offer
specific ideas how to minimize scattering or tolerate scattering.

A. The isothermal assumption

In this section we use the nondimensional units of Section II. We make es-
timates of the collisional transport of heat assuming that the sphere does not
move (expand) in the times of interest. This assumption is of course justified
by the fact that the calculated thermal equilibration time is short compared
to the expansion time Cg,/Ry. The electron collision rate in inverse seconds
sy, =23 101"’%7_'0“3/22“‘2. Therefore electrons establish a local maxwellian
in a small fraction of the expansion time (Cso/ Ry = 2.6- 10227, *R5Y). Fur-
thermore, the electron mean free path Ay, is short compared to the radius
of the sphere, specifically

/\mfp /
SALCTE PN IS [ o e (38
R Ty L1 )

Thus we estimate the time to reach a uniform temperature by using the
collisional transport coefficients of Braginski.*® In order to include some
geometrical factors we choose the estimated rate to be the decay rate of the
lowest order (slowest decaying) eigenmode of the linearised heat diffusion
equation, v4,,. Thus normalising this rate to C'sy/ R, we obtain,

s
Viso R() ZBFF{S‘ v
—— ~ 110=— . (39)
Csp Ry,
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Our estimate uses the final temperature to estimate thermal conduction. and
thus slightly overestimates the heat conduction. Since heat is deposited in
the collisionless skin depth, which is short compared to the sphere radius,
we expect initial temperature gradients to be large and nonlocal heat con-
ductivity to be important. However since we have a large ratio in Eq. (39)
such details are not expected to change the basic conclusion that the sphere
is isothermal. ‘

B. Pump scattering and absorption from the micro-
spheres

We shall take a simple linear electron response to the field inside the
microsphere (we treat the microsphere as a dense plasma sphere). So the
current J is given by

ﬁj _ __w‘;,eE
¢ (Ve — 1w)

) (40)

where wp, = (477,062 /m,)? = 5.6 1016 5}/? sec~! is the plasma frequency, w
is the pump laser frequency and v, the electron collision rate. Since v, = 2.3
105 7T % 22 sec™! and w is typically 7.5-10%sec™! for a KrF picosecond
laser, wy, >> w, v,. we can therefore ignore the displacement current in
Maxwell’s equations and obtain,

2g = Yoo (Y |
VB_CZ(MH,U)B . (41)
Thus the B field and therefore the current is confined to a layer of width Ipy
the skin depth,

C w
lp = —— M 42
P w,,el<w+iu>| (42)

Typically for w ~ v, I, ~ 4. 10“77'1(1)/2 << Ry and one can consider the

laser heating to be in a narrow shell on the outside of the microsphere. We
therefore take the limit /,/Ry << 1 and kl, << 1 where k = w/c but we
shall consider kRy ~ O(1). In this limit the sphe-e scatters light like a
perfectly conducting sphere. The absorption is small in the parameter Kip,
and results from the deviation from the perfectly conducting approximation.
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The calculation is standard, see for instance Jackson.*! Thus the scattering
cross section, o, is,

= .71
Too(T) = §2z+1 {J+yz

[(0+ D)y = Ljiaa)®

+ [
(L4 1) Jiey = Lgiga)? + [0+ Dyier lyz+1] }

= TRF(z) (43)

where ¢ = kR, and ji(z) and y,(z) are the spherical Bessel functions.** The
absorption cross section, o, is,

o 1 1
Taps(2) = (w) 21 RES (20 4+ 1) =1 5—
ola) = ol RS+ D g

1
+ : ) )
[0+ UV)jier = L 2+ [0+ Dyrey — 1y:+1]“}

= arR3G(z) (44)

where

“wi(l n t_li)uz] ,

Whe w

where R indicates that we take the real part of the expression in the brackets.
Clearly a(w) is smalil and the absorption cross section is small compared to
the geometric cross section. We plot F(z) and G(z) in Figure 9. Note
that for KRy << 1, 0y, ~ (10/37)R3(kro)* (Rayleigh scattering) and .5, ~
6mR2 a{w). Thus it is possible at long wavelength for the sacattering cross
section to be smaller than the absorption cross section.

a(w) = ?R[

C. Intensity requirements for the pump laser

The pump laser must heat the sphere before expansion since one wants a
hot high density plasma intially. Thus we shall assume that the laser pulse
lasts for a time at most equal to

Ry

Tpump = 0.6 =— . (‘15)

C'so
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Using Eq. (44) for the absorption cross section we obtain the required laser
intensity /, where
TS/Q 73

=29.1 iﬁL_ ~‘2. 46
I'=22-10 q(w)G(m)Wcm (46)

Note that the total energy delivered to each sphere is Z7igR} uJ. Typically
v, <<w and a = v,/2w,,. Then,

[~54-107 @Em—- Wem™2, (47)
When z = kRy — 0, G(z) — 6. We see that the required intensity scales
very unfarourably with Z. Currently available picosecond lasers can deliver
as much as 10" Wem™2, In Figure 10 we have plotted the required intensity
of 0.25 um light as a function of Z (using Eq. (46)) for the optiinal sphere
using the Ry(Z) and Ty(Z) obtained in Section II C. Also shown there is
the corresponding maximum pump laser pulse length 7,um,. We note that
at high Z the required intensity in fact approaches 10 W cm™% One may,
therefore, be forced to use a less than optimal value of T at high Z. We also
note that the pulse length requirement demands state of the art picosecond
lasers.

D. Physics coustraints on the size and shape of the
lasing region

The lasing region must be long and thin so that the induced emission is
emitted preferentially in the direction of elongation. The width of the lasing
region is constrained to be smaller than (or of order) the optical depth of
the n = 2 ton =1 “dump” transition. The gain is spoiled if this photon is
reabscrbed and electrons are excited to the n = 2 'evel. In colder material
the n = 2 ton = 1 photon is absorbed in bound-free transitions. Thus, the
photons are absorbed in cold spheres that surround the hot lasing medium
of spheres. It is clearly desirable to have a well-delineated width (of order
the n = 2 ton = 1 optical depth) to the region which is heated by the pump
laser. We have calculated the n = 2 to n = 1 optical depth numerically
(see Section II). In Figure 8¢ we plot 7}, the number mean free paths in a
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sphere radius for the dump transition photon, at the instant of peak gain,
for the optimum sphere, vs Z. We note, from Eq. (19) that the optical depth
is inversely proportional to Ay M3 nn.Z~% « Z7*n,n. Since, typically,
ni ~ 1, the optical depth scales like Z*

The X-ray laser output intensity grows exponentially with the length of
the lasing region, [, for [ less than a critical length, [.. Specifically, for [ < (.,
[ ~ exp(gael). When | = [, the induced decay rate from level n = 3 is
comparable with the spontaneous or collisional decay rate. The front of the
laser pulse continues to be amplified for [ > [, however the response is no
longer linear since the populations of the levels are affected by the laser light.
The laser pulse tends to steepen and the intensity grows roughly linearly with
length. At [ = [, the laser intensity has the critical value /.. at line center,

where
U3

Lowiy ~ 2.3 101 Z“Tl/ﬁ[ﬁ___m
ny — gany/ ga

] Wem™2, (48)
One may aiso estimate that [, ~ 2g3; In(w/l,) where w is the width of the
lasing region.

The full dynamics of the laser propagation is complicated and we shall
postpone any further discussion to a future publication. We note that it
might be appropriate for some applications to make multiple parallel lasing
regions simultaneously - this would effectively widen the total beam diameter
but still keep the width of each “beamlet” narrower than the optical depth.

E. Propagation of the pump Laser

Perhaps the simplest way to envisage heating the spheres with the pi-
cosecond pump laser ig to produce a long focus and place the spheres in the
focus (see Figure 1). In this scenario the spheres in the focus will be heated
and the shape of the lasing region is entirely defined by the focus. As we have
already stated, the width of the lasing region is constrained to be less than
the optical depth of the n = 2 to n = | transition - this width is achievable
at the focus of 0.25 um light. Unfortunately, the scattering of light by the
spheres broadens the focus and creates a problem. Let us first estimate this
effect. We will consider alternatives subsequently. Let n, he the density of
spheres, Ry the initial sphere radius and Ry the sphere radius at maximum
gain. We may wish to make n, ~ (8R'})”‘ so that the space is filled by
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the expansion and the gain is relatively uniform. The mean free path of the
pump laser light is A, = (0,.n,)"! where the scattering cross section is
given by Eq. (43). The length of the lasing region is effectively limited by
Amsp. The total gain times length, gio, for a medium that is one mean free
path long is

— (0w E_f. 3 1 :
Gtot = (gd.Ru)(Ro) FREy)) (49)
where F'(kRy) is defined in Eq. (43). Substituting numbers from our optimal
cases into Eq. (49) we find gy = 50 for Z = 10 (Z = 1) and gy =~ 1077
for Z = 30. Since we sould like g,y > 10 for a moderately efficient laser we
conclude that the scattering is intolerable at high Z.

There are several ways one might bypass the scattering problem - we
will briefly mention two. The spheres could be placed in a narrow tube of
width the optical depth. The pump laser would be focused into the tube
and the scattered pump radiation would be reflected from the tube walls.
The tube walls would, of course, become hot and expand but in the time
scale of interest this expansion is less than the width of the tube. A second
possiblity is to use a line focus and illuminate the spheres perpendicularly
to the direction of gain. Achieving high intensities with a line focus may be
problematic. It is also difficult to imagine producing the very sharp gradient
in sphere density needed in such a scheme.

Placing the spheres in the appropriate positions may not be too hard, If
one just requires a cloud of spheres one can suspeud them by their thermal
motions to an atmospheric scale height of approximately 50 um. Alterna-
tively, one may wish to drop the spheres into the path of the pump laser - on
the picosecond heating timescale the spheres are stationery, Practical details
such as these are really beyond the scope of this paper.

IV. Conclusions

This paper extends recombination laser schemes to shorter wavelengths.
The crucial idea is to form a lasing medium from many submicron spheres.
The spheres are heated by a powerful picosecond laser to temperatures com-
parable with the desired ionization energy. The material in a sphere is rapidly
ionized and then, as the sphere expands and cools, it recombines, The de-
sired nonequilibrium population inversion is obtained when the cooling rate

|)()
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is faster than the recombination rate. This cooling time is on the of order
a picosecond and the size of the spheres is chosen to achieve such cooling
times. Spheres are chosen chiefly because spherical expansions produce the
most rapid cooling rates. Many spheres are needed to make a significant gain
length product. A schematic of one arrangement of spheres and pump laser
is given in Figure 1,

We calculate the gain and other laser properties for lasing in the n = 3
to n = 2 transition in hydrogen-like ions. Ionsg with atomic numbers between
10 and 30 are considered. There is no reason why other lasing transitions
might not be considered - we chose the simplest.

In Section IT we consider the evolution of a single sphere. The expansion
of the sphere is modelled (see Section I A) by an isothermal similarity model
with a given initial temperature, Ty, density, ny, and radius, Ry. A simple
tractable model of the atomic physics is presented in Section II B, Tt is hoped
that this model will aid understanding. In Section II C, we calculate the gain
with a more complete numerical atomic model. The peak gain for a given
Z i3 a function of Ty and R,. We calculate the optimum values of T, and
Ry (those values that produce the largest gain) for each Z. In Figure 7a 7b,
7c, we plot the optimum gain, Ry and T against Z. The optimum gain falls
rapidly from about 103cm~! for Z = 10 to about 1ecm™! when Z = 30.

In Section III, we consider the issues involved in heating the microspheres
with a picosecond laser. The isothermal assumption is justified in Sec-
tion III A. In Section III B. the absorption and scattering of the pump
laser by a sphere is calculated. The required pump laser intensity is cal-
culated in Section IIT C. The width of the lasing region is limited to be
narrower than the optical depth of the n = 1 to n = 2 transition, as dis-
cussed in Section III D. Finally, in Section III E, we show that scattering of
the pump laser beam limits the kinds of pumping schemes that are possible.

The considerations in this paper involve a number of physics processes
and some of our models should be improved. In future work we intend to
consider a more complete atomic model-specifically more ionization stages
and more detailed calculations of the pump propagation. The experimeutal
implementation of this idea is relatively straight forward although the pump
laser requirements are at the forefront of current technology. An important
consideration is the reduction of prepulse to an acceptable level. Energy in
a prepulse can create a uniform warm plasma before the main pulse arrives.

4
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This will destroy the scheme. There are many ways to reduce the prepulse
and we hope to try some of them on the Princeton powerful subpicosecond
laser in the future.

There are other possible uses of the microsphere “gas.” For instance,
coincidence pumping of one transition by another?3-2 requires the pump
inn and the pumped ion to be in different plasma conditions. This could be
achieved by making the spheres of tlie pump element a different size than the
pumped element. The sizes of the spheres are chosen so that they yield the
appropriate plasma conditions upon heating and expanding. The spheres are
interm ‘ngled and heated simultaneousely by the pump laser. There are two
advantages to this scheme. First, the geometric coupling of pump photons
with pump ions would be close to 100 percent in such a scheme, Second, the
plasma conditions may be controlled with some precision by controlling the
sphere sizes and the pump laser intensity.

In summary, we believe that the calculations presented here indicate that
lasing can be achieved at wavelengths of 10 to 404 with our proposed scheme.
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Figures

FIG. 1. Lasing geometry showing focal region defining elongated gain struc-
ture.

FIG. 2. Diagram of 4-level laser used in analytic investigation of gain.

FIG. 3. Variations with atomic number Z as predicted by the analytic model.
Left scale: Maximum on-axis gain gz2( cm™1), (solid) optimized over both
Ry and T,. Right scale: Initial sphere radius Ro(cm) (short-dash) and
initial electron temperature To(eV) (long-dash) which lead to maximum
gain,

FIG. 4. Sketch illustrating competing effects which lead to a maximum in
gain as a function of initial sphere radius Ry and temperature 7 for a
given atomic number Z.

FIG. 5. Time evolution of hydrodynamic and atomic variables for titanium,
Z = 22, which has a lasing wavelength of 13.64. The initial conditions
are those which yield the largest value of the maximum in gs»(¢). The
initial radius Ry = 2.17 - 10~®cm. The initial electron temperature T =
3.1-10%eV. In all figures, the time ranges from the instant of heating
(time = 0) to 2.5 psec thereafter.

a. Evolution of hydrodynamic variables. Left scale: electron density
n(cm™?) (solid), electron temperature T'(eV) (short-dash). Right
scale: sphere radius, R, as defined through Eq. (?7) (long-dash).

b. Evolution of the fractional population of the ground state, ny, of the
hydrogen-like ion (dashed) and of the line-center gain gjo(cm™!) at
r =0 (solid).

c. The fractional populations of the upper and lower lasing levels, nj
(solid), resp., no (dashed).

d. The line-center optical depth for the dump transisiton, defined here
as To(r = 0,t) - R(t), is 3 initially, but drops to .87 at the time
(.86 psec) of peak gain.

e. The quenching coefficient at r = 0, Q(t), defined by Eq. (36), drops
to .46 at peak gain. The importance of excitation of the lower lasing
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level by collisional excitation from the ground state is characterized
by the relative excitation coefficient R,., defined by Eq. (37), which
is seen to drop to .11 at peak gain.

FIG. 6. Contour plot of peak gain vs. initial sphere radius R, and electron
temperature Tj, for Z = 22. The maximum occurs for Ry = 2.17-10"°cm
and Tp = 3.1- 10%eV is for the same parameters as the evolution plots of
Figure 6.

FIG. 7. Variations with atomic number Z as predicted by the numeric model.

a. Maximum on-axis gain gszp(cm™!), optimized with respect to both
RO and T[)
b. Initial sphere radius Ry(cm) which leads to maximum gain.

c. Initial electron temperature Ty(eV) which leads to maximum gain.

FIG. 8. Various quantities at the instant t* of peak gain vs atomic number

a. Fractional ionization, n¥,, (long-dash) upper, n%, (solid) and lower,
n4, (short-dash) lasing level fractional populations.

b. Time, t*, (solid) and relative expansion z* (dashed).
c. Opacity of dump transition 775 = gia(r = 0,t*) % R(¢*).
d. Quenching, @Q*, (solid) and relative excitation R}, (dashed).
FIG. 9. Plots of single-sphere scattering function F(z), (dashed) Eq. (43),

and absorption function G(z), (solid) Eq. (44), vs normalized pump laser
wavevector r = kR.

FIG. 10. Pump Intensity J(W cm™*) required to achieve maximum gain vs
Z, as calculated from Eq. (46) (solid), together with the corresponding
required maximum pump laser pulse length 7,,,,,(sec), from Eq. (45)
(dashed).
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