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Abstract. Analysis of the propagation of waves in the lower hybrid range of frequencies in

the past has been done using ray tracing and the WKB approximation. Advances in algorithms

and the availability of massively parallel computer architectures has permitted the solving of the

Maxwell-Vlasov system for wave propagation directly [Wright et al., Phys. Plasmas (2004), 11,

2473-2479]. These simulations have shown that the bridging of the spectral gap (the difference

between the high injected phase velocities and the slower phase velocity at which damping on

electrons occurs) can be explained by the diffraction effects captured in the full wave algorithm

- an effect missing in WKB based approaches. However, these full wave calculations were done

with a Maxwellian electron distribution and the presence of RF power induces quasilinear ve-

locity space diffusion that causes distortions away from an Maxwellian. With sufficient power,

a flattened region or plateau is formed between the point of most efficient damping on elec-

trons at about 2-3 vthe and where collisional and quasilinear diffusion balance. To address this

discrepancy and better model experiment, we have implemented [Valeo et al., ”Full-wave Simu-

lations of LH wave propagation in toroidal plasma with non-Maxwellian electron distributions”,

18th Topical Conference on Radio Frequency Power in Plasmas, AIP Conference Proceedings

(2007)] a non-Maxwellian dielectric in our full wave solver. We will show how these effects

modify the electron absorption relative to what is found for a Maxwellian distribution.

AMS subject classifications: 65L60, 35Q60
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1 Introduction

The wave equation finds much relevance in plasma physics. In this work we deal with externally

driven radio frequency (RF) waves in the lower hybrid (LH) range of frequencies. This range is

between the ion and electron cyclotron frequencies and is approximately given by ωlh ≈
√

ΩeΩi

where Ωi,e ≡ qB/mi,ec are the electron and ion cyclotron gyration frequencies in a magnetic field

of strength B. Because of the large mass ratio of protons to electrons, Amp/me ≈ A1836, this
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results in a hybrid frequency that is much less than the electron cyclotron frequency and much

greater than that of the ions’, Ωci � ω� Ωce. At these frequencies, the wavelengths are on the

order of a few millimeters for parameters typical of fusion research devices, i.e. the magnetic field

of the order of several Tesla and the electron density several times 1020 per m3. The waves also

have a high phase velocity on the order of 3-7 times the electron thermal velocity. This results in

a high efficiency for driving toroidal current in the plasma [1, 2] which is needed for steady state

stability of tokamak plasmas. For this reason, these waves have been proposed as a method of

edge current profile control for the International Tokamak Experimental Reactor (ITER) [3]. LH

experiments on Alcator C-Mod have achieved over 80% of the needed steady state current for the

duration of the discharge, which represents several times that needed for current relaxation [4].

These experiments are at ITER relevant plasma parameters but the machine is about 10 times

smaller than ITER making for more tractable sized simulations. Validation of our code on C-Mod

LH experiments would support its use for predictive studies of LH on the ITER device now under

construction.

The short wavelength relative to machine sizes of the order of a meter have encouraged the

use of ray tracing as the primary method for calculating the power and current drive deposition

in the plasma. The wavelengths are much shorter than the gradient scale length of the dielectric

tensor, and so the Wentzel, Kramers and Brillouin (WKB) method would seem to be appropriate.

While it can capture features such as broadening of the launched spectrum due to toroidicity [5]

and the propagation path, it breaks down in cases where the rays undergo multiple reflections

from cutoffs and caustics and form a stochastic field. Extended ray tracing techniques such as

the Maslov method popular in seismology [6] and the wave-kinetic method [7], are valid at the

caustic surfaces; but because the LH cutoffs in tokamak plasmas occur in the plasma edge where

the gradients are very large, they violate the WKB approximation where the plasma is changing

on the same scale as the wavelength [8].

A more serious challenge to traditional ray tracing is the importance of diffraction in LH wave
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propagation [9, 10]. Although in LH experiments, frequencies are chosen to avoid the presence of

any mode conversion, components of the wavenumber vector vanish at the caustics, and significant

diffraction can occur there. There are other methods of dealing with high frequency waves that

attempt to account for finite frequency effects such as diffraction [11] within the ray tracing picture.

We have chosen to simulate the lower hybrid waves directly with the full wave code, TORIC [12],

to account for these effects.

The outline of this paper is as follows. In Section 2 we describe the TORIC code and its

discretization of the wave equation. In Section 3 the changes to the plasma model for the dielectric

in the lower hybrid range of frequencies (LHRF) are given. We next discuss the inclusion of non-

Maxwellian electrons in the plasma dielectric response in Section 4 - a critical requirement for

waves with high phase velocities which cause large departures of the particle distribution from

equilibrium. In Section 5 we discuss parallelization of the code. Section 6 concludes with a

discussion of some possible applications and future improvements to the algorithm.

2 The wave equation and the TORIC code

The Maxwell-Boltzmann system in plasma physics reduces to a Helmholtz equation when mod-

eling high frequency RF waves; essentially describing wave propagation in an anisotropic con-

ducting media but with the non-local response of the plasma producing an integral form for the

dielectric [13]. The wave amplitudes are taken to be small in the sense that three wave interactions

play no role and we may linearize the Boltzmann equation. We assume that the equilibrium plasma

quantitites are not changing on the time scale of wave propagation so the problem is represented in

the frequency domain E ∼ exp(iωt) and it is a partial differential equation in space only. This com-

plex dielectric admits the existence of waves at widely disparate scales and different polarizations

relative to the equilibrium magnetic field.
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∇×∇×E =
ω2

c2

{
E+

4πi
ω

(
JP +JA)} (2.1a)

E(x) = ∑
m

Em(r)exp(imθ+ inφ) (2.1b)

k‖ = (mB ·∇θ+nφB ·∇φ)/B (2.1c)

JP
m(r) = ∑

m

↔
σc

(
km
‖ ,r
)
·Em(r) (2.1d)

The plasma wave equation that results [14] is given in Eq. (2.1a). The plasma response is

embodied in the term JP in Eq. (2.1d) and the type of wave generated is determined by the po-

larization of the electric field in the boundary condition set in the antenna current, JA and the

specified wave frequency, ω. In the case of a loop antenna, JA determines a jump condition in the

wave magnetic field (different from the plasma equilibrium magnetic field, B) at the boundary that

results in a Robin boundary condition due to the curvilinear toroidal coordinates (r,θ,φ). A wave

guide source is represented by a Dirichlet boundary condition on E - the case we are concerned

with in this paper. The plasma conductivity tensor is represented by
↔
σc and is simply related to the

dielectric by
↔
ε =

↔
I + 4πi

ω

↔
σc. It depends on the wavenumber, k‖, from Eq. (2.1c) whose geometric

dependence may be readily understood from its form in the limit of circular flux surfaces:

k‖ =
m
r

Bθ

B
+

nφ

R
Bφ

B
.

The currents represented by JP and JA are oscillating currents proportional to E and are distinct

from the steady current induced in the electrons during current drive experiments that contributes

to the confining magnetic field.

Equation (2.1b) shows how the problem is discretized by Fourier collocation in the periodic

dimensions and cubic Hermite finite elements in the radial dimension. This representation also has

the advantage of producing an algebraic representation of the parallel wavenumber [Eq. (2.1c)]
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which is used in evaluating the conductivity in Eq. (2.1d). The resulting discrete system is solved

by putting Eq. (2.1a) into Galerkin’s weak variational form [12] which produces a dense block

tridiagnonal system that is solved using the Thomas algorithm with the individual blocks being

inverted with LU decomposition. In the ion cyclotron range of frequencies, the TORIC code

is used routinely in a predictive mode and for analysis. It has been validated successfully on

experiments on Alcator C-Mod [15, 16] has been compared against other codes [10, 17]. In the

following sections we describe the extension of the plasma model for LHRF with non-Maxwellian

electrons.

3 The plasma response model

In the lower hybrid range of frequencies, the ions are unmagnetized and effectively cold and the

electrons are strongly magnetized
[
(k⊥ρe)2� 1

]
. In Eq. (3.1) we consider the conductivity with

thermal effects. The expressions for the plasma dielectric given in Eq. (3.3) and Eq. (3.1) are

derived in references [12,14] and correspond to the fourth and sixth order lower hybrid dispersion

relations [18, 19] respectively when ∇ is replaced by the wavenumber, k.

↔
ε ·E = SE⊥+ iD(b×E⊥)+PE‖b+∇⊥(σ∇⊥ ·E) (3.1)

S≈ 1+
ω2

pe

Ω2
ce
−

ω2
pi

ω2 (3.2)

D≈−
ω2

pe

ω2
ω

Ωce
+

ω2
pi

ω2
Ωci

ω

P = 1−
ω2

pe

ω2 −ξ
2Z′(ξ) where ξ≡ ω/k‖vthe

σ =
3
2

ω2
pi

ω2
v2

thi
c2

(
1+

ω4

Ω2
ciΩ

2
ce

Te

4Ti

)

where S, D, and P, are the Stix cold plasma dielectric elements in the LHRF for the normal, co-
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normal, and parallel directions [20], and ω2
ps ≡ 4πnsq2

s/ms is the plasma frequency for species s.

The pressure driven term, σ, is the finite Larmor radius (FLR) correction to S and is responsible

for the ion plasma LH branch. In regimes of experimental interest, σ is nearly vanishing and the

ion plasma wave is strongly evanescent. In Eq. (3.1) and Eq. (3.3) below we have dropped the

mode number suffixes but it should be understood that in general the coefficients S,D,P,and σ are

integral operators. The neglected FLR corrections to Eq. (3.3) support the mode converted ion

plasma wave. Since this wave does not propagate for plasmas of experimental interest in which

ω/ωLH > 2 [19], we may neglect these corrections in the following analysis, and thus there are

only two propagating modes, the fast electromagnetic LH branch that damps via electron Landau

damping (ELD) and transit time magnetic pumping (TTMP) and the slow electrostatic LH branch

that damps via ELD. Note, that although the FLR terms play no role, parallel thermal effects are

kept through the plasma dispersion function in the ELD and TTMP damping in the plasma model.

Thus, we no longer need the ion finite thermal effects. After we drop the pressure driven term

and therefore only solve for the fast and slow LH waves, the wave equation solved simplifies to

∇×∇×E = S E⊥+ iD (b×E⊥)+P E‖b. (3.3)

The neglected sixth order coefficient is proportional to β

√
me
mi

in the LHRF and has no effect on

the slow and fast branches. Here β≡ p/B2 is the ratio the plasma pressure and the magnetic field

pressure. When the pressure driven term is set to zero, the equation for the radial component of

the electric field is only related algebraically to the other two equations. This is a consequence

of the nature of the Helmoltz operator, which does not have a radial derivative operating on Er.

It is necessary to remove Er from the system of equations to avoid numerical pollution during

the solution of the coupled finite element ordinary differential equations that result. This reduced

system is much less stiff and results in a smaller matrix that is faster to solve by a factor of (8/27)

when using LU decomposition. The linear algebra for the reduction is done within the code. After
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Eθ and Eφ are solved for, Er is reconstructed.

4 Non-Maxwellian dielectric implementation

The dielectric response in the plasma is evaluated from velocity space integrals of a particle dis-

tribution function, f0(r,v⊥,v‖) [20]. In the specific case of a Maxwellian distribution this results

in an infinite series of modified Bessel functions and Z-functions (also called the plasma disper-

sion function or Fried-Conte functions [21].) The presence of RF power causes velocity space

diffusion that drives the distribution away from an Maxwellian. With sufficient power, a region

of reduced slope or plateau is formed by this RF quasilinear diffusion between the point of most

efficient damping on electrons at about v‖ ≈ 2− 3vthe and where collisional and quasilinear dif-

fusion balance [22, 23]. When we neglect finite Larmor radius effects in the LHRF, the Bessel

functions are reduced to a single coefficient, but we are still left with evaluating the generalized

plasma dispersion function. For the purposes of this paper, we will use the evaluation of the ε‖,‖

component of the dielectric, where ‖ denotes the direction parallel to the equilibrium magnetic

field. The derivation presented below closely follows that of Valeo [24].

ε‖,‖ = 1+
2ω2

p

k‖w2
⊥

[
B(ξ)+

Z
dv

v‖
ω

f0(v)
]

(4.1)

B(ξ)≡ 2π

Z
∞

−∞

dv‖
v‖

ω− k‖v‖

Z
∞

0
dv⊥v⊥H(v‖,v⊥) (4.2)

In Eq. (4.1), w⊥ is the perpendicular variance of the distribution; for a Maxwellian distribution

w⊥ = vthe. The first term in brackets poses the most difficulty in evaluation because it has a pole

as shown in Eq. (4.2). H(v‖,v⊥) is non-singular and closely related to f0 and is given in Equation

10.50 of Stix [20]. What is important to note is that the perpendicular velocity space integrals

produce smoothly varying functions of v‖ whose product with the singular function w(v‖) = (ω−
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k‖v‖)−1 must then be integrated in v‖. If f0 is Maxwellian, then these parallel velocity space

integrals can be represented in terms of the plasma dispersion function Z(ω/k‖vthe). Our goal is

to evaluate Eq. (4.2) efficiently for arbitrary f0.

In the integral over v⊥ in Eq. (4.2) the factor w(v‖) is a singular weight function and the

remaining part of the integrand, which we represent by C(v‖) = v‖
R

∞

0 dv⊥v⊥H(v‖,v⊥), is smooth.

Therefore, B(ξ) will be smooth and we are justified in tabulating it on a uniform mesh, ξ = x j,

where x j is a velocity mesh coordinate normalized to vthe. We evaluate C j =C(v‖/vthe = x j) on the

same mesh with a simple linear tent function in Eq. (4.3) for interpolation. The weight function is

also made discrete with w j = w(v‖/vthe = x j).

Tj =

 1− |x−x j|
∆

if
∣∣x−xj

∣∣≤ ∆

0 otherwise
(4.3)

K j =
Z 1

−1
dv

1−|v|
v+ j

=


ln
(

j+1
j−1

)
− j ln

(
j2

j2−1

)
| j|> 1,

± ln4 j =±1,

iπ j = 0.

(4.4)

The evaluation of B(ξ) in Eq. (4.2) now can be reduced to a known integral of interpolating

tent function Ti and the discrete singular weight function, w j. This known integral is the kernel

function, K j in Eq. (4.4). The evaluation of B in Eq. (4.2) now results in a convolution between Ci

and K j.

B(ξ/vthe = xk) = Bk = ∑
i

CiKi−k (4.5)

This technique has been verified by comparing results for a Maxwellian velocity distribution

for which B(ξ) should be Z functions. The computational cost of the general technique is quite

modest. For example, a mesh of 200 points for the parallel velocity grid takes about four times

as long as for the analytic evaluation employing the Z function. As this is only a portion of the
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Figure 1: Left figure: E‖ for a Maxwellian distribution. Right figure, E‖ with a quasilinear plateau. The
enhancement of absorption is clearly evident. The parameters used are characteristic of Alcator C with
central magnetic field of 10T , central density of 5×1019m−3 , central temperature of 1.8 keV. With a parallel
index of 1.87 at the waveguide mouth. Major/minor radii of R/a = 66cm/16.5cm Profiles are simple double
parabolic: f (r/a≡ x) = (1− x2)2 .

overall calculation and its cost is fixed as the spatial resolution increases, it’s impact on run time

is vanishing for large problems. Applied to a test non-Maxwellian distribution, we can see the

importance of including the generalized dielectric. In the plots of Re(E‖) in Fig.(1), with non-

zero quasilinear diffusion (DQL), a plateau tail is formed for values of v‖/vthe between 2.2 and 8.

The magnitude of DQL determines how flat the plateau is and there is no appreciable change in

the results for larger values. We can see that for a Maxwellian, the absorption is fairly weak and

almost a standing wave pattern is set up, while in the presence of the wave induced velocity space

diffusion, strong absorption in front of the waveguide (midplane on the right side of the contour

plots) is seen. The plasma parameters were chosen to accentuate this effect having low damping

due to the relatively low temperature and density.
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ErEE

m=1 m=2 m=1,2,...

Figure 2: Diagram of the reordering of matrix elements needed for elimination of Er in the lower hybrid
algorithm. The red solid lines separate the stiffness matrix into four cpu regions. For construction and
solution each cpu has all field components at a mesh point or points for most efficient communication as in
the left example. On the right, the matrix has been reordered so that each field components representation
is logically continuous in the distributed matrix.

5 Parallelization and convergence

When we examine the required resolution for LH simulations even for smaller research tokamaks,

we quickly conclude that a parallel version is needed both for memory requirements and reason-

able executions times. The worst case for poloidal resolution is at the caustics where kr vanishes

and k⊥ ≈m/r. The number of modes needed depends on radius with the most restrictive condition

at the plasma edge. Taking k⊥ = 2π/1mm and r = a =20 cm we estimate Nm ≈ 1200. If we take

λr ≈ 1 mm as a typical radial wavelength and require 2 cubic elements per wavelength, the require-

ment is for 400 radial elements for the same minor radius. The scalar version of the TORIC code

accepts any problem dimension but is limited to memory requirements of array storage. Using

out-of-core techniques can extend the resolution about another factor of two in each dimension,

but then the processing time becomes burdensome (due to problem size, not the out-of-core disk

access). The practical effect is that given 2GB of RAM memory, the problem size is restricted
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to approximately 400 radial elements with 255 poloidal modes, or half that in both dimensions if

the out-of-core technique is not used. Parallelization is clearly required to achieve the necessary

resolutions for lower hybrid simulations.

The previous ion cyclotron version of TORIC has already been parallelized [17, 25]. Paral-

lelization is done in the poloidal dimension for matrix inversion of the resulting block tri-diagonal

system with ScaLAPACK [26] and along the radial dimension during processing of the solution

for power and current drive deposition. The added complication introduced by the LH version

is associated with the elimination of Er - the diagram in Fig. 2 illustrates the issue. For the pur-

poses of the construction of the stiffness equation it is most efficient to have each electric field

component and it’s derivative on the same cpu. During the elimination and post calculation of Er

we need to invert the sub-matrix representing the coefficients of Er in the stiffness matrix. Since

ScaLAPACK only can do this for stride one distributed matrices, the matrix must be reordered

so that the needed coefficients are logically contiguous. The parallel version has been verified for

small problems against the serial version of the code. Cross verification against ray tracing has

shown diffraction to have significant effects on drive heating and current profiles [10].

Lower hybrid simulations require high resolution, particularly in the direction parallel to the

equilibrium magnetic field to resolve all the important scales. Such large simulations are only

possible on large parallel systems. As Fig. 3 demonstrates, two thousand poloidal modes can

easily be required to resolve lower hybrid waves in a high field tokamak. At the antenna, the

spectrum is narrow and peaked about m = 0, i.e. the launched n‖ determined by the toroidal mode

number. By r/a ∼ 0.8 diffraction has broadened the spectrum to m ∼ 800 and most of the wave

energy has been absorbed. The two primary reasons for the large amount of resolution needed

are that the wave scale itself is small and the parallel phase velocity at which damping occurs

has to be resolved. For the Alcator C-Mod tokamak used in this simulation, the wavelength is on

the order of a millimeter the minor radius of 22 cm. With two cubic elements per wavelength,

we require a minimum of 600 radial elements. In addition, waves will diffract while propagating
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Spectrum of Re(E ||) vs. flux
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Figure 3: A measure of spectral convergence in poloidal dimension. The case presented is an experimentally
relevant scenario on the Alcator C-Mod tokamak. The plasma parameters used are a magnetic field of 5.5
Tesla, electron density of 7× 1019m−3, and electron temperature of 5 keV and a deuterium plasma. Values
given are the at the center of the device. Wave frequency is 4.6 GHz and parallel index is 2.55. The resolution
used is 980 radial elements and 4096 poloidal grid cells which permits 2047 poloidal Fourier modes.

until their parallel phase velocity is on the order of a few times the thermal electron velocity,

ω/k‖ ∼ 3vthe, at which point they will damp. Since vthe ≡
√

kBTe/me ≈ 42
√

Te[keV] where kB

is the Boltzmann constant, we can write this as a condition on the parallel index of refraction,

n‖ ≡ k‖ω/c: n‖ ≈ 5.4/
√

Te[keV]. So for absorption in the outer parts of the plasma where the

temperature may be of the order of 1 keV or less, the parallel index must shift to values greater

than 5. Consulting Eq. (2.1c) we see this translates directly to increased poloidal resolution.
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6 Discussion

The parallel algorithm is capable of the required resolutions for Alcator C-Mod which has sim-

ilar LH wave dispersion as in ITER. Recent hard X-ray (HXR) measurements on C-Mod show

consistent differences from synthetic diagnostics using ray tracing [4]. In brief, the measurements

are broader with a larger integrated signal than the simulations, indicating that deposition layer is

further out in minor radius with a more intense field. This is consistent with observed differences

between full wave and ray tracing calculations - in full wave simulations diffraction causes a large

upshift in the parallel wavenumber shifting the resonant phase velocity downwards, and so the

waves damp on cooler electrons that are at larger minor radii. We plan next to investigate this case

in detail with the parallel solver. This work will also require coupling the non-Maxwellian dielec-

tric to a Fokker- Planck solver via a quasilinear diffusion operator. For this step we would leverage

previous work coupling the AORSA full wave code and the CQL3D Fokker-Plank code [27] under

the US RF- SciDAC project.

We have described a new tool for understanding lower hybrid physics in tokamaks. A full

wave code TORIC with non-Maxwellian electrons will be able to investigate heating and current

drive scenarios in tokamaks without using the WKB approximation. Coupling to a Fokker-Planck

code will permit self-consistency between the fields and the distortion of the distribution. Dis-

crepancies in recent Alcator C-Mod experiments with simulation motivate applying this tool to

better understand the HXR measurements. Accurate understanding of the role of diffraction in

determining the location of current drive could have important impacts on the implementation of

lower hybrid in ITER.
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