478 research outputs found

    Greenhouse engineering: New technologies and approaches

    Get PDF
    Firstly, this article discusses the greenhouse engineering situation in three geographic areas which are relevant in the field of protected cultivation: Northern Asia, The Netherlands and the Mediterranean. For each area, the prevailing greenhouse type and equipment is briefly described. Secondly, the main technological constraints are pointed out and finally the research directions are discussed. For all areas under consideration, attempts to design more efficient greenhouse systems are under way. In Northern Asia progress is being made towards the optimisation of greenhouses as a solar collector and to the development of new heating strategies. Important subjects addressed in The Netherlands are energy conservation and the replacement or alleviation of human labour by increasing mechanisation. In the Mediterranean there is growing interest in semi-closed greenhouses with CO2 enrichment and control of excessive humidity. All geographic areas share the need of having an optimised climate control based on the crop response to the greenhouse environment. All areas also share the requirement of being respectful to the environment, therefore future greenhouses are expected to use engineering to produce with minimal or zero emissions

    Global Strings in High Density QCD

    Get PDF
    We show that several types of global strings occur in colour superconducting quark matter due to the spontaneous violation of relevant U(1) symmetries. These include the baryon U(1)_B, and approximate axial U(1)_A symmetries as well as an approximate U(1)_S arising from kaon condensation. We discuss some general properties of these strings and their interactions. In particular, we demonstrate that the U(1)_A strings behave as superconducting strings. We draw some parallels between these strings and global cosmological strings and discuss some possible implications of these strings to the physics in neutron star cores.Comment: LaTeX JHEP-format (26 pages) Option in source for REVTeX4 forma

    Magnetism in Dense Quark Matter

    Full text link
    We review the mechanisms via which an external magnetic field can affect the ground state of cold and dense quark matter. In the absence of a magnetic field, at asymptotically high densities, cold quark matter is in the Color-Flavor-Locked (CFL) phase of color superconductivity characterized by three scales: the superconducting gap, the gluon Meissner mass, and the baryonic chemical potential. When an applied magnetic field becomes comparable with each of these scales, new phases and/or condensates may emerge. They include the magnetic CFL (MCFL) phase that becomes relevant for fields of the order of the gap scale; the paramagnetic CFL, important when the field is of the order of the Meissner mass, and a spin-one condensate associated to the magnetic moment of the Cooper pairs, significant at fields of the order of the chemical potential. We discuss the equation of state (EoS) of MCFL matter for a large range of field values and consider possible applications of the magnetic effects on dense quark matter to the astrophysics of compact stars.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Localized Tachyons and the g_cl conjecture

    Full text link
    We consider C/Z_N and C^2/Z_N orbifolds of heterotic string theories and Z_N orbifolds of AdS_3. We study theories with N=2 worldsheet superconformal invariance and construct RG flows. Following Harvey, Kutasov, Martinec and Moore, we compute g_cl and show that it decreases monotonically along RG flows- as conjectured by them. For the heterotic string theories, the gauge degrees of freedom do not contribute to the computation of g_cl.Comment: Corrections and clarifications made, 19 page

    Superluminal pions in a hadronic fluid

    Full text link
    We study the propagation of pions at finite temperature and finite chemical potential in the framework of the linear sigma model with 2 quark flavors and NcN_c colors. The velocity of massless pions in general differs from that of light. One-loop calculations show that in the chiral symmetry broken phase pions, under certain conditions, propagate faster than light.Comment: 8 pages, 3 figures included. Considerably revised, discussions expanded, one figure added, typos corrected, results unchanged. To be published in Phys. Rev.

    Drum vortons in high density QCD

    Get PDF
    Recently it was shown that high density QCD supports of number of topological defects. In particular, there are U(1)_Y strings that arise due to K^0 condensation that occurs when the strange quark mass is relatively large. The unique feature of these strings is that they possess a nonzero K^+ condensate that is trapped on the core. In the following we will show that these strings (with nontrivial core structure) can form closed loops with conserved charge and currents trapped on the string worldsheet. The presence of conserved charges allows these topological defects, called vortons, to carry angular momentum, which makes them classically stable objects. We also give arguments demonstrating that vortons carry angular momentum very efficiently (in terms of energy per unit angular momentum) such that they might be the important degrees of freedom in the cores of neutron stars.Comment: 11 pages, accepted for publication in Physical Review

    Magnetic catalysis and anisotropic confinement in QCD

    Full text link
    The expressions for dynamical masses of quarks in the chiral limit in QCD in a strong magnetic field are obtained. A low energy effective action for the corresponding Nambu-Goldstone bosons is derived and the values of their decay constants as well as the velocities are calculated. The existence of a threshold value of the number of colors NcthrN^{thr}_c, dividing the theories with essentially different dynamics, is established. For the number of colors NcNcthrN_c \ll N^{thr}_c, an anisotropic dynamics of confinement with the confinement scale much less than ΛQCD\Lambda_{QCD} and a rich spectrum of light glueballs is realized. For NcN_c of order NcthrN^{thr}_c or larger, a conventional confinement dynamics takes place. It is found that the threshold value NcthrN^{thr}_c grows rapidly with the magnetic field [Ncthr100N^{thr}_c \gtrsim 100 for eB(1GeV)2|eB| \gtrsim (1{GeV})^2]. In contrast to QCD with a nonzero baryon density, there are no principal obstacles for checking these results and predictions in lattice computer simulations.Comment: 10 pages, 1 figure. REVTeX. Minor correction. To appear in Phys. Rev.

    Views of the Chiral Magnetic Effect

    Full text link
    My personal views of the Chiral Magnetic Effect are presented, which starts with a story about how we came up with the electric-current formula and continues to unsettled subtleties in the formula. There are desirable features in the formula of the Chiral Magnetic Effect but some considerations would lead us to even more questions than elucidations. The interpretation of the produced current is indeed very non-trivial and it involves a lot of confusions that have not been resolved.Comment: 19 pages, no figure; typos corrected, references significantly updated, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Massless BTZ black holes in minisuperspace

    Full text link
    We study aspects of the propagation of strings on BTZ black holes. After performing a careful analysis of the global spacetime structure of generic BTZ black holes, and its relation to the geometry of the SL(2,R) group manifold, we focus on the simplest case of the massless BTZ black hole. We study the SL(2,R) Wess-Zumino-Witten model in the worldsheet minisuperspace limit, taking into account special features associated to the Lorentzian signature of spacetime. We analyse the two- and three-point functions in the pointparticle limit. To lay bare the underlying group structure of the correlation functions, we derive new results on Clebsch-Gordan coefficients for SL(2,R) in a parabolic basis. We comment on the application of our results to string theory in singular time-dependent orbifolds, and to a Lorentzian version of the AdS/CFT correspondence.Comment: 28 pages, v2: reference adde

    Decay Rate Ratios of Upsilon(5S) to B Bbar Reactions

    Full text link
    We calculate the decay rate ratios for OZI allowed decays of Upsilon(5S) to two B mesons by using the decay amplitudes which incorporate the wave function of the Upsilon(5S) state. We obtain the results that the branching ratio of the Upsilon(5S) decay to Bs* Bs*bar is much larger than the branching ratio to Bs Bs*bar or Bsbar Bs*, in good agreement with recent experimental results of CLEO and BELLE. This agreement with the experimental results is made possible since the nodes of the Upsilon(5S) radial wave function induce the nodes of the decay amplitude. We find that the results for the Upsilon(5S) decays to Bu(*) Bu(*)bar or Bd(*) Bd(*)bar pairs are dependent on the parameter values used for the potential between heavy quarks.Comment: 9 pages, 5 figure
    corecore