38 research outputs found

    Effects of genotype on the response of Populus tremuloides michx. To ozone and nitrogen deposition

    Full text link
    Elevated O 3 concentrations and N deposition levels co -occur in much of eastern United States. However, very little is known about their combined effects on tree growth. The effects of three O 3 treatments: charcoal-filtered air, non-filtered air and O 3 , added at the rate of 80 ppb for 6 hr d −1 3 d per week), four N deposition levels (0, 10, 20 and 40 kg ha −1 yr −1 ), and their interactions on growth of two Populus tremuloides clones in open-top chambers at two sites 600 km apart in Michigan were examined. Our results revealed a highly significant fertilization effect of the N treatments, even at the 10 kg ha −1 yr −1 rate. Ozone alone induced foliar injury, but not significant growth reductions. There was an indication that O 3 decreased growth at the O N level, but this decrease was reversed in all N treatments by the N fertilization effect. Further study is needed to more fully understand the combined effects of N deposition and O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43906/1/11270_2004_Article_BF00480254.pd

    Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Full text link
    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd

    Plântulas de soja 'Tracajá' expostas ao ozônio sob condições controladas

    Get PDF
    The objective of this work was to assess initial growth, biomass production, gas exchange and antioxidative defenses of soybean 'Tracajá' seedlings, cultivated in the Amazonian region, exposed to ozone under controlled conditions. Seeds germinated in pots were placed in two chambers, one with filtered air (AF) and other with filtered air plus 30 ppb of ozone (AF + O 3). At 10 and 20 days after sowing, gas exchange, growth and biomass were measured; at 20 days after sowing, antioxidative defenses (ascorbic acid and superoxide dismutase) were analyzed. Net photosynthesis, stomatal conductance, transpiration rate, height, leaf area and biomass were 16, 27, 11, 22, 29 and 18% smaller, respectively, in AF + O3 at 10 days after sowing. At 20 days after sowing, besides this parameters, root length, stem diameter and root:shoot ratio were 10, 15 and 12% smaller, respectively, although ascorbic acid concentrations and superoxide dismutase activity increased. Soybean 'Tracajá' seedlings have low tolerance to concentration of 30 ppb of ozone

    Air pollution effects on food quality. Final progress report. CAES No. 555-80

    No full text
    The impact of ozone on the qualitative characteristics of potatoes, alfalfa and soybeans is discussed. The impact on yield, total solids, sugar status and tuber glycoalkaloid (TGA) content was measured. The effects of ozone on the leaves were also noted. Field trials were conducted as well as laboratory experiments. (DC

    Nitrogen supply as a limiting factor determining the sensitivity of Populus tremuloides Michx. to ozone stress

    No full text
    Seedlings of trembling aspen {Populus tremuloides Michx.) were grown at six rates of supplemental nitrogen (N). Five of the N rates were sub-optimal to optimal for growth, whilst the sixth provided an excess of N with no additional growth benefit. T h e biomass of plants stressed b y ozone (O3) in open-top chambers was significantly reduced at optimal rates of N. Plants which received sub-optimal or excess N showed no significant effects of O., on hiomass accumulation. Ozone induced two compensatory responses; increased shoot/root ratio and accelerated senescence, at all N rates. Growth rate was strongly influenced by the amount o f N supplied, and O.,-induced reductions in total biomass were highly correlated with growth rate. W e concluded that when growth rate was small as a result of N limitation, compensatory responses to O,, stress were sufficient to prevent detectable losses in biomass

    Akt2, a Novel Functional Link between p38 Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase Pathways in Myogenesis

    No full text
    Activation of either the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt or the p38 mitogen-activated protein kinase (MAPK) signaling pathways accelerates myogenesis but only when the reciprocal pathway is functional. We therefore examined the hypothesis that cross-activation between these signaling cascades occurs to orchestrate myogenesis. We reveal a novel and reciprocal cross-talk and activation between the PI 3-kinase/Akt and p38 MAPK pathways that is essential for efficient myoblast differentiation. During myoblast differentiation, Akt kinase activity correlated with S473 but not T308 phosphorylation and occurred 24 h after p38 activation. Inhibition or activation of p38 with SB203580, dominant-negative p38, or MKK6EE regulated Akt kinase activity. Analysis of Akt isoforms revealed a specific increase in Akt2 protein levels that coincided with AktS473 phosphorylation during myogenesis and an enrichment of S473-phosphorylated Akt2. Akt2 promoter activity and protein levels were regulated by p38 activation, thus providing a mechanism for communication. Subsequent Akt activation by S473 phosphorylation was PI 3-kinase dependent and specific for Akt2 rather than Akt1. Complementary to p38-mediated transactivation of Akt, activation or inhibition of PI 3-kinase regulated p38 activity upstream of MKK6, demonstrating reciprocal communication and positive feedback characteristic of myogenic regulation. Our findings have identified novel communication between p38 MAPK and PI 3-kinase/Akt via Akt2

    Partitioning of IGFBP-5 actions in myogenesis: IGF-independent anti-apoptotic function

    No full text
    Igfbp5 is upregulated during the differentiation of several key cell lineages and in some tumours; the function of IGFBP-5 in these physiological and pathological situations is unknown. Since IGFBP-5 contains sequence motifs consistent with IGF-independent actions, the aim of these studies was to distinguish between IGF-dependent and -independent actions of IGFBP-5. Myc-tagged wild-type (termed wtIGFBP-5) and non-IGF binding mouse Igfbp5 (termed mutIGFBP-5) cDNAs were generated and used to transfect C2 myoblasts, a cell line that undergoes differentiation to myotubes in an IGF- and IGFBP-5-regulated manner. WtIGFBP-5, but not mutIGFBP-5, inhibited myogenesis, as assessed by cell morphology, MHC immunocytochemistry and caveolin 3 expression. However, both wt- and mutIGFBP-5 increased cell survival and decreased apoptosis, as indicated by decreased caspase-3 activity and cell surface annexin V binding. Further examination of apoptotic pathways revealed that wt- and mutIGFBP-5 ameliorated the increase in caspase-9 but not the modest increase in caspase-8 during myogenesis, suggesting that IGFBP-5 increased cell survival via inhibition of intrinsic cell death pathways in an IGF-independent manner. The relationship between IGF-II and IGFBP-5 was examined further by cotransfecting C2 myoblasts with antisense Igf2 (previously established to induce increased cell death) and Igfbp5; both wt- and mutIGFBP-5 conferred equivalent protection against the decreased cell survival and increased apoptosis. In conclusion, we have partitioned IGFBP-5 action in myogenesis into IGF-dependent inhibition of differentiation and IGF-independent cell survival. Our findings suggest that, by regulation of cell survival, IGFBP-5 has an autonomous role in the regulation of cell fate in development and in tumourigenesis
    corecore