1,443 research outputs found

    Quantum numbers for relative ground states of antiferromagnetic Heisenberg spin rings

    Full text link
    We suggest a general rule for the shift quantum numbers k of the relative ground states of antiferromagnetic Heisenberg spin rings. This rule generalizes well-known results of Marshall, Peierls, Lieb, Schultz, and Mattis for even rings. Our rule is confirmed by numerical investigations and rigorous proofs for special cases, including systems with a Haldane gap. Implications for the total spin quantum number S of relative ground states are discussed as well as generalizations to the XXZ model.Comment: 8 pages, 2 figures, submitted to Phys. Rev. B. More information at http://www.physik.uni-osnabrueck.de/makrosysteme

    A Portfolio Approach to Mortality Shocks and Fertility Choice:Theory and Evidence from Africa

    Get PDF
    Abstract: The effects of the HIV/AIDS epidemic on fertility in Africa remains ill understood. To align the contrasting findings of recent empirical research, we develop a portfolio model that captures the potential trade-off between "quantity" and "quality" of offspring. According to this theoretical model, the overall impact of mortality shocks on fertility is heterogeneous, and involves changes in human capital investment strategies. A key prediction is that investment switching and fertility impacts are conditional on income levels. We use African panel data to test the implications of the model, and find strong support for key model predictions. In particular, the impact of HIV prevalence on both fertility and human capital investments varies with income in a manner that is consistent with model predictions.

    Role of disorder in half-filled high Landau levels

    Full text link
    We study the effects of disorder on the quantum Hall stripe phases in half-filled high Landau levels using exact numerical diagonalization. We show that, in the presence of weak disorder, a compressible, striped charge density wave, becomes the true ground state. The projected electron density profile resembles that of a smectic liquid. With increasing disorder strength W, we find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a transition/crossover to an isotropic phase with strong local electron density fluctuations takes place. The many-body density of states are qualitatively distinguishable in these two phases and help elucidate the nature of the transition.Comment: 4 pages, 4 figure

    Some exact results for a trapped quantum gas at finite temperature

    Full text link
    We present closed analytical expressions for the particle and kinetic energy spatial densities at finite temperatures for a system of noninteracting fermions (bosons) trapped in a d-dimensional harmonic oscillator potential. For d=2 and 3, exact expressions for the N-particle densities are used to calculate perturbatively the temperature dependence of the splittings of the energy levels in a given shell due to a very weak interparticle interaction in a dilute Fermi gas. In two dimensions, we obtain analytically the surprising result that the |l|-degeneracy in a harmonic oscillator shell is not lifted in the lowest order even when the exact, rather than the Thomas-Fermi expression for the particle density is used. We also demonstrate rigorously (in two dimensions) the reduction of the exact zero-temperature fermionic expressions to the Thomas-Fermi form in the large-N limit.Comment: 14 pages, 4 figures include

    Obtaining Top Management Support in IT Projects: A Case Study

    Get PDF
    Research has argued that one reason for IT project failure is the lack of top management support. However, obtaining top management support is often considered outside the IT project team’s locus of control. Our research demonstrates that top management support can be obtained through continuous engagement. Also, a failure to engage can decrease top management support. We reveal an engagement strategy that starts with small favor requests followed by increasingly onerous favors rewarded by small concessions. This is demonstrated through a case study of the support of three division heads and their corresponding divisions in the implementation of an enterprise system. In case 1, an indifferent division head withdrew support after a lack of IT engagement. In case 2, a hostile division head became an advocate of the system after continuous IT engagement. Finally, in case 3, a supportive division head became more supportive as a result of continuous engagement by IT

    Thermal and ground-state entanglement in Heisenberg XX qubit rings

    Get PDF
    We study the entanglement of thermal and ground states in Heisernberg XXXX qubit rings with a magnetic field. A general result is found that for even-number rings pairwise entanglement between nearest-neighbor qubits is independent on both the sign of exchange interaction constants and the sign of magnetic fields. As an example we study the entanglement in the four-qubit model and find that the ground state of this model without magnetic fields is shown to be a four-body maximally entangled state measured by the NN-tangle.Comment: Four pages and one figure, small change

    Effects of etchants in the transfer of chemical vapor deposited graphene

    Get PDF
    The quality of graphene can be strongly modified during the transfer process following chemical vapor deposition (CVD) growth. Here, we transferred CVD-grown graphene from a copper foil to a SiO2/Si substrate using wet etching with four different etchants: HNO3, FeCl3, (NH4)2S2O8, and a commercial copper etchant. We then compared the quality of graphene after the transfer process in terms of surface modifications, pollutions (residues and contaminations), and electrical properties (mobility and density). Our tests and analyses showed that the commercial copper etchant provides the best structural integrity, the least amount of residues, and the smallest doping carrier concentration

    Spectral densities and partition functions of modular quantum systems as derived from a central limit theorem

    Full text link
    Using a central limit theorem for arrays of interacting quantum systems, we give analytical expressions for the density of states and the partition function at finite temperature of such a system, which are valid in the limit of infinite number of subsystems. Even for only small numbers of subsystems we find good accordance with some known, exact results.Comment: 6 pages, 4 figures, some steps added to derivation, accepted for publication in J. Stat. Phy
    corecore