16 research outputs found
From bi-layer to tri-layer Fe nanoislands on Cu3Au(001)
Self assembly on suitably chosen substrates is a well exploited root to
control the structure and morphology, hence magnetization, of metal films. In
particular, the Cu3Au(001) surface has been recently singled out as a good
template to grow high spin Fe phases, due to the close matching between the
Cu3Au lattice constant (3.75 Angstrom) and the equilibrium lattice constant for
fcc ferromagnetic Fe (3.65 Angstrom). Growth proceeds almost layer by layer at
room temperature, with a small amount of Au segregation in the early stage of
deposition. Islands of 1-2 nm lateral size and double layer height are formed
when 1 monolayer of Fe is deposited on Cu3Au(001) at low temperature. We used
the PhotoElectron Diffraction technique to investigate the atomic structure and
chemical composition of these nanoislands just after the deposition at 140 K
and after annealing at 400 K. We show that only bi-layer islands are formed at
low temperature, without any surface segregation. After annealing, the Fe atoms
are re-aggregated to form mainly tri-layer islands. Surface segregation is
shown to be inhibited also after the annealing process. The implications for
the film magnetic properties and the growth model are discussed.Comment: Revtex, 5 pages with 4 eps figure