108 research outputs found
Energy and Momentum densities of cosmological models, with equation of state , in general relativity and teleparallel gravity
We calculated the energy and momentum densities of stiff fluid solutions,
using Einstein, Bergmann-Thomson and Landau-Lifshitz energy-momentum complexes,
in both general relativity and teleparallel gravity. In our analysis we get
different results comparing the aforementioned complexes with each other when
calculated in the same gravitational theory, either this is in general
relativity and teleparallel gravity. However, interestingly enough, each
complex's value is the same either in general relativity or teleparallel
gravity. Our results sustain that (i) general relativity or teleparallel
gravity are equivalent theories (ii) different energy-momentum complexes do not
provide the same energy and momentum densities neither in general relativity
nor in teleparallel gravity. In the context of the theory of teleparallel
gravity, the vector and axial-vector parts of the torsion are obtained. We show
that the axial-vector torsion vanishes for the space-time under study.Comment: 15 pages, no figures, Minor typos corrected; version to appear in
International Journal of Theoretical Physic
Energy and Momentum Distributions of Kantowski and Sachs Space-time
We use the Einstein, Bergmann-Thomson, Landau-Lifshitz and Papapetrou
energy-momentum complexes to calculate the energy and momentum distributions of
Kantowski and Sachs space-time. We show that the Einstein and Bergmann-Thomson
definitions furnish a consistent result for the energy distribution, but the
definition of Landau-Lifshitz do not agree with them. We show that a signature
switch should affect about everything including energy distribution in the case
of Einstein and Papapetrou prescriptions but not in Bergmann-Thomson and
Landau-Lifshitz prescriptions.Comment: 12 page
Energy Contents of Some Well-Known Solutions in Teleparallel Gravity
In the context of teleparallel equivalent to General Relativity, we study
energy and its relevant quantities for some well-known black hole solutions.
For this purpose, we use the Hamiltonian approach which gives reasonable and
interesting results. We find that our results of energy exactly coincide with
several prescriptions in General Relativity. This supports the claim that
different energy-momentum prescriptions can give identical results for a given
spacetime. We also evaluate energy-momentum flux of these solutions.Comment: 16 pages, accepted for publication in Astrophys. Space Sc
Energy and Momentum Densities Associated with Solutions Exhibiting Directional Type Singularities
We obtain the energy and momentum densities of a general static axially
symmetric vacuum space-time described by the Weyl metric, using Landau-Lifshitz
and Bergmann-Thomson energy-momentum complexes. These two definitions of the
energy-momentum complex do not provide the same energy density for the
space-time under consideration, while give the same momentum density. We show
that, in the case of Curzon metric which is a particular case of the Weyl
metric, these two definitions give the same energy only when .
Furthermore, we compare these results with those obtained using Einstein,
Papapetrou and M{\o}ller energy momentum complexes.Comment: 10 pages, references added, minor corrections [Admin note:
substantial overlap with gr-qc/0403097 , gr-qc/0403039
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Since the mid-1920s, different strands of research used stars as "physics
laboratories" for investigating the nature of matter under extreme densities
and pressures, impossible to realize on Earth. To trace this process this paper
is following the evolution of the concept of a dense core in stars, which was
important both for an understanding of stellar evolution and as a testing
ground for the fast-evolving field of nuclear physics. In spite of the divide
between physicists and astrophysicists, some key actors working in the
cross-fertilized soil of overlapping but different scientific cultures
formulated models and tentative theories that gradually evolved into more
realistic and structured astrophysical objects. These investigations culminated
in the first contact with general relativity in 1939, when J. Robert
Oppenheimer and his students George Volkoff and Hartland Snyder systematically
applied the theory to the dense core of a collapsing neutron star. This
pioneering application of Einstein's theory to an astrophysical compact object
can be regarded as a milestone in the path eventually leading to the emergence
of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal
Distribution of Energy-Momentum in a Schwarzschild-Quintessence Space-time Geometry
An analysis of the energy-momentum localization for a four-dimensional\break
Schwarzschild black hole surrounded by quintessence is presented in order to
provide expressions for the distributions of energy and momentum. The
calculations are performed by using the Landau-Lifshitz and Weinberg
energy-momentum complexes. It is shown that all the momenta vanish, while the
expression for the energy depends on the mass of the black hole, the state
parameter and the normalization factor . The special case of
is also studied, and two limiting cases are examined.Comment: 9 page
User Centered Cognitive Maps
Two kinds of influence graphs are commonly used in artificial intelligence to modelize influence networks: bayesian networks [Naïm et al., 2004] and cognitive maps [Tolman, 1948]. Influence graphs provide mechanisms to highlight the influence between concepts. Cognitive maps represent a concept by a text and an influence by an arc to which a value is associated
Spatial Representation and Navigation in a Bio-inspired Robot
A biologically inspired computational model of rodent repre-sentation?based (locale) navigation is presented. The model combines visual input in the form of realistic two dimensional grey-scale images and odometer signals to drive the firing of simulated place and head direction cells via Hebbian synapses. The space representation is built incrementally and on-line without any prior information about the environment and consists of a large population of location-sensitive units (place cells) with overlapping receptive fields. Goal navigation is performed using reinforcement learning in continuous state and action spaces, where the state space is represented by population activity of the place cells. The model is able to reproduce a number of behavioral and neuro-physiological data on rodents. Performance of the model was tested on both simulated and real mobile Khepera robots in a set of behavioral tasks and is comparable to the performance of animals in similar tasks
- …