26 research outputs found

    Chiral multiplets versus parity doublets in highly excited baryons

    Get PDF
    It has recently been suggested that the parity doublet structure seen in the spectrum of highly excited baryons may be due to effective chiral restoration for these states. We argue how the idea of chiral symmetry restoration high in the spectrum is consistent with the concept of quark-hadron duality. If chiral symmetry is effectively restored for highly-lying states, then the baryons should fall into representations of SU(2)L×SU(2)RSU(2)_L\times SU(2)_R that are compatible with the given parity of the states - the parity-chiral multiplets. We classify all possible parity-chiral multiplets: (i) (1/2,0)⊕(0,1/2)(1/2,0)\oplus(0, 1/2) that contain parity doublet for nucleon spectrum;(ii) (3/2,0)⊕(0,3/2)(3/2,0) \oplus (0, 3/2) consists of the parity doublet for delta spectrum; (iii) (1/2,1)⊕(1,1/2)(1/2,1) \oplus (1, 1/2) contains one parity doublet in the nucleon spectrum and one parity doublet in the delta spectrum of the same spin that are degenerate in mass. Here we show that the available spectroscopic data for nonstrange baryons in the ∌\sim 2 GeV range is consistent with all possibilities, but the approximate degeneracy of parity doublets in nucleon and delta spectra support the latter possibility with excited baryons approximately falling into (1/2,1)⊕(1,1/2)(1/2,1) \oplus (1, 1/2) representation of SU(2)_L\timesSU(2)_R with approximate degeneracy between positive and negative parity NN and Δ\Delta resonances of the same spin.Comment: RevTeX, 6 pages. The paper has been expanded in order to make the idea of chiral symmetry restoration as it follows from the concept of quark-hadron duality more transparent. To appear in Phys. Rev.

    New nonrenormalization theorems for anomalous three point functions

    Full text link
    Nonrenormalization theorems involving the transverse, i.e. non anomalous, part of the correlator in perturbative QCD are proven. Some of their consequences and questions they raise are discussed.Comment: 14 pages. People added in the acknowledgements. Minor changes to match version to appear in journa

    e+e−→bbˉW+W−e^+e^- \to b\bar b W^+W^- events at the Next Linear Collider: colour structure of top signal and irreducible background

    Full text link
    We examine the colour structure and charged particle yield for both the ttˉt \bar t signal and the irreducible background processes contributing to \eebbww\ production close to the \ttb\ threshold. The charged particle multiplicity for the various components of the cross section is computed as a function of several kinematic variables. Our study may have important implications for recently proposed studies of interconnection phenomena in \ttb\ production at high--energy e+e−e^+e^- collidersComment: 14 pages, Latex, 8 figures uuencoded, complete ps file available via anonymous ftp at: ftp://axpc.hep.phy.cam.ac.uk/disk$alpha1:[public.hep9514]CAVENDISH_9514.ps http://www.hep.phy.cam.ac.uk/theory/papers/index.htm

    Neural network parametrization of spectral functions from hadronic tau decays and determination of QCD vacuum condensates

    Full text link
    The spectral function ρV−A(s)\rho_{V-A}(s) is determined from ALEPH and OPAL data on hadronic tau decays using a neural network parametrization trained to retain the full experimental information on errors, their correlations and chiral sum rules: the DMO sum rule, the first and second Weinberg sum rules and the electromagnetic mass splitting of the pion sum rule. Nonperturbative QCD vacuum condensates can then be determined from finite energy sum rules. Our method minimizes all sources of theoretical uncertainty and bias producing an estimate of the condensates which is independent of the specific finite energy sum rule used. The results for the central values of the condensates O6O_6 and O8O_8 are both negative.Comment: 29 pages, 18 ps figure

    Semileptonic B and Lambda_b Decays and Local Duality in QCD

    Full text link
    The inclusive and exclusive semileptonic decay distributions for b -> c decay are computed in the Shifman-Voloshin limit. The inclusive decay distributions (computed using an operator product expansion) depend on quark masses, and the exclusive decay distributions depend on hadron masses. Nevertheless, we show explicitly how the first two terms in the 1/m expansion match between the inclusive and exclusive decays. Agreement between the inclusive and exclusive decay rates requires a minimum smearing region of size Lambda_QCD before local duality holds in QCD. The alpha_s corrections to the inclusive and exclusive decay rates are also shown to agree to order (log m)/m^2. The alpha_s/m^2 corrections are used to obtain the alpha_s correction to Bjorken's inequality on the slope of the Isgur-Wise function.Comment: 22 pages, 3 eps figures, uses revtex (Revision: a discussion of radiative corrections to the bound K>0 of Section 7.B has been added; some typos, including labels in fig 2

    SU(4)L⊗U(1)NSU(4)_L \otimes U(1)_N model for the electroweak interactions

    Full text link
    Assuming the existence of right-handed neutrinos, we consider an electroweak model based on the gauge symmetry SU(4)L⊗U(1)NSU(4)_L\otimes U(1)_N. We study the neutral currents coupled to all neutral vector bosons present in the theory. There are no flavor changing neutral currents at tree level, coupled with the lightest neutral vector boson.Comment: Revtex 11 pages, preprint IFT-P.003/9

    KLN theorem, magnetic mass, and thermal photon production

    Get PDF
    We study the infrared singularities associated to ultra-soft transverse gluons in the calculation of photon production by a quark-gluon plasma. Despite the fact that the KLN theorem works in this context and provides cancellations of infrared singularities, it does not prevent the production rate of low invariant mass dileptons to be sensitive to the magnetic mass of gluons and therefore the rate to be non perturbative.Comment: 9 pages Latex document, 5 postscript figures, modified figure 5 and slightly updated section

    Matching Regge Theory to the OPE

    Full text link
    The spectra of masses and decay constants for non-strange meson resonances in the energy range 0--2.5 GeV is analyzed. It is known from meson phenomenology that for given quantum numbers these spectra approximately follow linear trajectories with a universal slope. These facts can be understood in terms of an effective string description for QCD. For light meson states the trajectories deviate noticeably from the linear behavior. We investigate the possible corrections to the linear trajectories by matching two-point correlators of quark currents to the Operator Product Expansion (OPE). We find that the allowed modifications to the linear Regge behavior must decrease rapidly with the principal quantum number. After fitting the lightest states in each channel and certain low-energy constants the whole spectrum for meson masses and residues is obtained in a satisfactory agreement with phenomenology. We briefly speculate on possible implications for the QCD effective string.Comment: 24 pages, Latex, significant changes in discussion of fits, more refs adde

    Modeling quark-hadron duality for relativistic, confined fermions

    Full text link
    We discuss a model for the study of quark-hadron duality in inclusive electron scattering based on solving the Dirac equation numerically for a scalar confining linear potential and a vector color Coulomb potential. We qualitatively reproduce the features of quark-hadron duality for all potentials considered, and discuss similarities and differences to previous models that simplified the situation by treating either the quarks or all particles as scalars. We discuss the scaling results for PWIA and FSI, and the approach to scaling using the analog of the Callan-Gross relation for y-scaling.Comment: 38 pages, 21 figure

    Nonresonant Semileptonic Heavy Quark Decay

    Get PDF
    In both the large N_c limit and the valence quark model, semileptonic decays are dominated by resonant final states. Using Bjorken's sum rule in an "unquenched" version of the quark model, I demonstrate that in the heavy quark limit nonresonant final states should also be produced at a significant rate. By calculating the individual strengths of a large number of exclusive two-body nonresonant channels, I show that the total rate for such processes is highly fragmented. I also describe some very substantial duality-violating suppression factors which reduce the inclusive nonresonant rate to a few percent of the total semileptonic rate for the finite quark masses of B decay, and comment on the importance of nonresonant decays as testing grounds for very basic ideas on the structure, strength, and significance of the quark-antiquark sea and on quark-hadron duality in QCD.Comment: 51 pages, 2 Postscript figure
    corecore