40 research outputs found

    A class of kinks in SU(N)\times Z_2

    Full text link
    In a classical, quartic field theory with SU(N)×Z2SU(N) \times Z_2 symmetry, a class of kink solutions can be found analytically for one special choice of parameters. We construct these solutions and determine their energies. In the limit N→∞N\to \infty, the energy of the kink is equal to that of a kink in a Z2Z_2 model with the same mass parameter and quartic coupling (coefficient of Tr(Φ4){\rm Tr}(\Phi^4)). We prove the stability of the solutions to small perturbations but global stability remains unproven. We then argue that the continuum of choices for the boundary conditions leads to a whole space of kink solutions. The kinks in this space occur in classes that are determined by the chosen boundary conditions. Each class is described by the coset space H/IH/I where HH is the unbroken symmetry group and II is the symmetry group that leaves the kink solution invariant.Comment: 7 pages; included discussion of gauge fields and other improvement

    Static intervortex forces

    Full text link
    A point particle approximation to the classical dynamics of well separated vortices of the abelian Higgs model is developed. A static vortex is asymptotically identical to a solution of the linearized field theory (a Klein-Gordon/Proca theory) in the presence of a singular point source at the vortex centre. It is shown that this source is a composite scalar monopole and magnetic dipole, and the respective charges are determined numerically for various values of the coupling constant. The interaction potential of two well separated vortices is computed by calculating the interaction Lagrangian of two such point sources in the linear theory. The potential is used to model type II vortex scattering.Comment: Much shorter (10 pages) published version, new titl

    A dual point description of mesoscopic superconductors

    Full text link
    We present an analysis of the magnetic response of a mesoscopic superconductor, i.e. a system of sizes comparable to the coherence length and to the London penetration depth. Our approach is based on special properties of the two dimensional Ginzburg-Landau equations, satisfied at the dual point (κ=12).(\kappa = \frac{1}{\sqrt{2}}). Closed expressions for the free energy and the magnetization of the superconductor are derived. A perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using a new scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure

    Vortex lattice stability in the SO(5) model

    Full text link
    We study the energetics of superconducting vortices in the SO(5) model for high-TcT_c materials proposed by Zhang. We show that for a wide range of parameters normally corresponding to type II superconductivity, the free energy per unit flux \FF(m) of a vortex with mm flux quanta is a decreasing function of mm, provided the doping is close to its critical value. This implies that the Abrikosov lattice is unstable, a behaviour typical of type I superconductors. For dopings far from the critical value, \FF(m) can become very flat, indicating a less rigid vortex lattice, which would melt at a lower temperature than expected for a BCS superconductor.Comment: 4 pp, revtex, 5 figure

    New vortex solution in SU(3) gauge-Higgs theory

    Get PDF
    Following a brief review of known vortex solutions in SU(N) gauge-adjoint Higgs theories we show the existence of a new ``minimal'' vortex solution in SU(3) gauge theory with two adjoint Higgs bosons. At a critical coupling the vortex decouples into two abelian vortices, satisfying Bogomol'nyi type, first order, field equations. The exact value of the vortex energy (per unit length) is found in terms of the topological charge that equals to the N=2 supersymmetric charge, at the critical coupling. The critical coupling signals the increase of the underlying supersymmetry.Comment: 15 page

    Moving lattice kinks and pulses: an inverse method

    Full text link
    We develop a general mapping from given kink or pulse shaped travelling-wave solutions including their velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this mapping - by definition an inverse method - to acoustic solitons in chains with nonlinear intersite interactions, to nonlinear Klein-Gordon chains, to reaction-diffusion equations and to discrete nonlinear Schr\"odinger systems. Potential functions can be found in at least a unique way provided the pulse shape is reflection symmetric and pulse and kink shapes are at least C2C^2 functions. For kinks we discuss the relation of our results to the problem of a Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for moving solutions.Comment: 15 pages, 5 figure

    Dyons in N=4 Gauged Supergravity

    Full text link
    We study monopole and dyon solutions to the equations of motion of the bosonic sector of N = 4 gauged supergravity in four dimensional space-time. A static, spherically symmetric ansatz for the metric, gauge fields, dilaton and axion leads to soliton solutions which, in the electrically charged case, have compact spatial sections. Both analytical and numerical results for the solutions are presented.Comment: 12 pages, 7 figures. Minor changes, references adde

    Mesoscopic superconductors in the London limit: equilibrium properties and metastability

    Full text link
    We present a study of the behaviour of metastable vortex states in mesoscopic superconductors. Our analysis relies on the London limit within which it is possible to derive closed analytical expressions for the magnetic field and the Gibbs free energy. We consider in particular the situation where the vortices are symmetrically distributed along a closed ring. There, we obtain expressions for the confining Bean-Livingston barrier and for the magnetization which turns out to be paramagnetic away from thermodynamic equilibrium. At low temperature, the barrier is high enough for this regime to be observable. We propose also a local description of both thermodynamic and metastable states based on elementary topological considerations; we find structural phase transitions of vortex patterns between these metastable states and we calculate the corresponding critical fields.Comment: 24 pages, 20 figure

    SU(5) monopoles and non-abelian black holes

    Get PDF
    We construct spherically and axially symmetric monopoles in SU(5) Yang-Mills-Higgs theory both in flat and curved space as well as spherical and axial non-abelian, ''hairy'' black holes. We find that in analogy to the SU(2) case, the flat space monopoles are either non-interacting (in the BPS limit) or repelling. In curved space, however, gravity is able to overcome the repulsion for suitable choices of the Higgs coupling constants and the gravitational coupling. In addition, we confirm that indeed all qualitative features of (gravitating) SU(2) monopoles are found as well in the SU(5) case. For the non-abelian black holes, we compare the behaviour of the solutions in the BPS limit with that for non-vanishing Higgs self-coupling constants.Comment: 14 Revtex pages, 9 PS-figure

    Vortex Interactions and Thermally Induced Crossover from Type-I to Type-II Superconductivity

    Full text link
    We have computed the effective interaction between vortices in the Ginzburg-Landau model from large-scale Monte-Carlo simulations, taking thermal fluctuations of matter fields and gauge fields fully into account close to the critical temperature. We find a change, in the form of a crossover, from attractive to repulsive effective vortex interactions in an intermediate range of Ginzburg-Landau parameters κ∈[0.76−1]/2\kappa \in [0.76-1]/\sqrt{2} upon increasing the temperature in the superconducting state. This corresponds to a thermally induced crossover from \typeI to \typeII superconductivity around a temperature TCr(κ)T_{\rm{Cr}}(\kappa), which we map out in the vicinity of the metal-to-superconductor transition. In order to see this crossover, it is essential to include amplitude fluctuations of the matter field, in addition to phase-fluctuations and gauge-field fluctuations. We present a simple physical picture of the crossover, and relate it to observations in \metal{Ta} and \metal{Nb} elemental superconductors which have low-temperature values of κ\kappa in the relevant range.Comment: 9 pages, 6 figures. Accepted for publication in Physical Review
    corecore