3,517 research outputs found

    Theory of bound polarons in oxide compounds

    Full text link
    We present a multilateral theoretical study of bound polarons in oxide compounds MgO and \alpha-Al_2O_3 (corundum). A continuum theory at arbitrary electron-phonon coupling is used for calculation of the energies of thermal dissociation, photoionization (optically induced release of an electron (hole) from the ground self-consistent state), as well as optical absorption to the non-relaxed excited states. Unlike the case of free strong-coupling polarons, where the ratio \kappa of the photoionization energy to the thermal dissociation energy was shown to be always equal to 3, here this ratio depends on the Froehlich coupling constant \alpha and the screened Coulomb interaction strength \beta. Reasonable variation of these two parameters has demonstrated that the magnitude of \kappa remains usually in the narrow interval from 1 to 2.5. This is in agreement with atomistic calculations and experimental data for hole O^- polarons bound to the cation vacancy in MgO. The thermal dissociation energy for the ground self-consistent state and the energy of the optically induced charge transfer process (hops of a hole between O^{2-} ions) have been calculated using the quantum-chemical method INDO. Results obtained within the two approaches for hole O−^- polarons bound by the cation vacancies (V^-) in MgO and by the Mg^{2+} impurity (V_{Mg}) in corundum are compared to experimental data and to each other. We discuss a surprising closeness of the results obtained on the basis of independent models and their agreement with experiment.Comment: 13 pages, 2 figures, 2 tables, E-mail addresses: [email protected], [email protected]

    Entry Guidance for the 2011 Mars Science Laboratory Mission

    Get PDF
    The 2011 Mars Science Laboratory will be the first Mars mission to attempt a guided entry to safely deliver the rover to a touchdown ellipse of 25 km x 20 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented

    Effect of diffusive boundaries on surface superconductivity in unconventional superconductors

    Full text link
    Boundary conditions for a superconducting order parameter at a diffusive scattering boundary are derived from microscopic theory. The results indicate that for all but isotropic gap functions the diffusive boundary almost completely suppresses surface superconductivity in the Ginzburg-Landau regime. This indicates that in anisotropic superconductors surface superconductivity can only be observed for surface normals along high symmetry directions where atomically clean surfaces can be cleaved.Comment: Latex File, 12 pages, 2 Postscript figures, to appear in Phys. Rev. B (June 1 1996

    Temporal build-up of electromagnetically induced transparency and absorption resonances in degenerate two-level transitions

    Get PDF
    The temporal evolution of electromagnetically induced transparency (EIT) and absorption (EIA) coherence resonances in pump-probe spectroscopy of degenerate two-level atomic transition is studied for light intensities below saturation. Analytical expression for the transient absorption spectra are given for simple model systems and a model for the calculation of the time dependent response of realistic atomic transitions, where the Zeeman degeneracy is fully accounted for, is presented. EIT and EIA resonances have a similar (opposite sign) time dependent lineshape, however, the EIA evolution is slower and thus narrower lines are observed for long interaction time. Qualitative agreement with the theoretical predictions is obtained for the transient probe absorption on the 85Rb^{85}Rb D2D_{2} line in an atomic beam experiment.Comment: 10 pages, 9 figures. Submitted to Phys. Rev.

    On the speed of convergence to stationarity of the Erlang loss system

    Get PDF
    We consider the Erlang loss system, characterized by NN servers, Poisson arrivals and exponential service times, and allow the arrival rate to be a function of N.N. We discuss representations and bounds for the rate of convergence to stationarity of the number of customers in the system, and display some bounds for the total variation distance between the time-dependent and stationary distributions. We also pay attention to time-dependent rates

    Study of the Linked Dipole Chain Model in heavy quark production at the Tevatron

    Full text link
    We present calculations of charm and beauty production at Tevatron within the framework of kT-factorization, using the unintegrated gluon distributions as obtained from the Linked Dipole Chain model. The analysis covers transverse momentum and rapidity distributions and the azimuthal correlations between b and bbar quarks (or rather muons from their decay) which are powerful tests for the different unintegrated gluon distributions. We compare the theoretical results with recent experimental data taken by D0 and CDF collaborations at the Tevatron Run I and II.Comment: 16 page

    Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts

    Get PDF
    Friction management has been carried out extensively in the majority of railway networks in the last few years. A popular practice is the application of friction modifiers to increase the adhesion level in contaminated wheel-rail contacts. Two friction modifiers have particularly been used or tested on several railway networks as adhesion enhancers to facilitate the traction and braking operation under poor adhesion conditions. However, for assessment of the performance the railway operators and infrastructure managers mostly rely on practical observations that do not elucidate completely the effectiveness and side effects of these adhesion enhancers. In this paper, the constituents of the two friction modifiers are identified and the solid components are analyzed. A twin-disk roller rig has been used to study their performance in dry and wet contacts under closely controlled laboratory conditions. The adhesion characteristics of both friction modifiers are examined for different slip ratios. Furthermore, the wheel and rail disks are examined after a series of dry tests to analyze the mass loss, the surface damage, the change in surface hardness and roughness, and the subsurface deformation caused by the friction modifiers compared to dry clean contacts. (C) 2009 Elsevier B.V. All rights reserved

    Angular momenta creation in relativistic electron-positron plasma

    Get PDF
    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrodinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe.Comment: 20 pages, 6 figure

    Dynamics of quantum quenching for BCS-BEC systems in the shallow BEC regime

    Full text link
    The problem of coupled Fermi-Bose mixtures of an ultracold gas near a narrow Feshbach resonance is approached through the time-dependent and complex Ginzburg-Landau (TDGL) theory. The dynamical system is constructed using Ginzburg-Landau-Abrikosov-Gor'kov (GLAG) path integral methods with the single mode approximation for the composite Bosons, and the equilibrium states are obtained in the BEC regime for adiabatic variations of the Feshbach detuning along the stationary solutions of the dynamical system. Investigations into the rich superfluid dynamics of this system in the shallow BEC regime yields the onset of multiple interference patterns in the dynamics as the system is quenched from the deep-BEC regime. This results in a partial collapse and revival of the coherent matter wave field of the BEC, whose temporal profile is reported.Comment: 24 pages, 7 figures. Submitted to European Journal of Physics Plu

    Bhabha Scattering with Radiated Gravitons at Linear Colliders

    Full text link
    We study the process e+- e- -> e+- e- +- missing energy at a high-energy e+- e- collider, where the missing energy arises from the radiation of Kaluza-Klein gravitons in a model with large extra dimensions. It is shown that at a high-energy linear collider, this process can not only confirm the signature of such theories but can also sometimes be comparable in effectiveness to the commonly discussed channel e+- e- -> gamma +- missing energy, especially for a large number of extra dimensions and with polarized beams. We also suggest some ways of distinguishing the signals of a graviton tower from other types of new physics signals by combining data on our suggested channel with those on the photon-graviton channel.Comment: 16 pages, LaTex, 8 figures embedded, typos, report no and references correcte
    • 

    corecore