6 research outputs found

    Modeling of coherent beam combining from multimillijoule chirped pulse tapered fiber amplifiers

    No full text
    The amplification of high energy chirped pulses in Large Mode Area tapered fiber amplifiers and their coherent combining have been investigated numerically. We have developed a three-dimensional model of strongly chirped nanosecond pulse amplification and compression back to femtosecond duration fully taking into account transverse and longitudinal variations of refractive index profile and distribution of active ions in the fiber, wavelength dependence of emission and absorption cross sections, gain saturation and Kerr nonlinearity. Modeling of Yb-doped fiber amplifier shows that up to 3鈥塵J of output energy can be extracted in 1鈥塶s pulse with single-mode beam quality. Finally, we have investigated numerically the capabilities of compression and coherent combining of up to 36 perturbed amplifying channels in which high-order modes were excited and have obtained more than 70% combining efficiency and 380鈥塮s compressed pulse duration

    Optimizing the generation of polarization squeezed light in nonlinear optical fibers driven by femtosecond pulses

    Get PDF
    Bright squeezed light can be generated in optical fibers utilizing the Kerr effect for ultrashort laser pulses. However, pulse propagation in a fiber is subject to nonconservative effects that deteriorate the squeezing. Here, we analyze two-mode polarization squeezing, which is SU(2)-invariant, robust against technical perturbations, and can be generated in a polarization-maintaining fiber. We perform a rigorous numerical optimization of the process and the pulse parameters using our advanced model of quantum pulse evolution in the fiber that includes various nonconservative effects and real fiber data. Numerical results are consistent with experimental results
    corecore