15,559 research outputs found

    Noise Power Spectrum Scene-Dependency in Simulated Image Capture Systems

    Get PDF
    The Noise Power Spectrum (NPS) is a standard measure for image capture system noise. It is derived traditionally from captured uniform luminance patches that are unrepresentative of pictorial scene signals. Many contemporary capture systems apply non- linear content-aware signal processing, which renders their noise scene-dependent. For scene-dependent systems, measuring the NPS with respect to uniform patch signals fails to characterize with accuracy: i) system noise concerning a given input scene, ii) the average system noise power in real-world applications. The scene- and-process-dependent NPS (SPD-NPS) framework addresses these limitations by measuring temporally varying system noise with respect to any given input signal. In this paper, we examine the scene-dependency of simulated camera pipelines in-depth by deriving SPD-NPSs from fifty test scenes. The pipelines apply either linear or non-linear denoising and sharpening, tuned to optimize output image quality at various opacity levels and exposures. Further, we present the integrated area under the mean of SPD-NPS curves over a representative scene set as an objective system noise metric, and their relative standard deviation area (RSDA) as a metric for system noise scene-dependency. We close by discussing how these metrics can also be computed using scene-and-process- dependent Modulation Transfer Functions (SPD-MTF)

    Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings

    Get PDF
    Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography

    Comment on "Accelerated Detectors and Temperature in (Anti) de Sitter Spaces"

    Get PDF
    It is shown how the results of Deser and Levin on the response of accelerated detectors in anti-de Sitter space can be understood from the same general perspective as other thermality results in spacetimes with bifurcate Killing horizons.Comment: 5 pages, LaTe

    Mechanics of universal horizons

    Full text link
    Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or Einstein-{\ae}ther theory violate local Lorentz invariance and therefore destroy the notion of a universal light cone. Despite this, in the infrared limit both models above possess static, spherically symmetric solutions with "universal horizons" - hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, there still exist black hole solutions. We construct a Smarr formula (the relationship between the total energy of the spacetime and the area of the horizon) for such a horizon in Einstein-{\ae}ther theory. We further show that a slightly modified first law of black hole mechanics still holds with the relevant area now a cross-section of the universal horizon. We construct new analytic solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our results work in these exact cases. Our results suggest that holography may be extended to these theories despite the very different causal structure as long as the universal horizon remains the unique causal boundary when matter fields are added.Comment: Minor clarifications. References update

    Quantum field theory on a growing lattice

    Full text link
    We construct the classical and canonically quantized theories of a massless scalar field on a background lattice in which the number of points--and hence the number of modes--may grow in time. To obtain a well-defined theory certain restrictions must be imposed on the lattice. Growth-induced particle creation is studied in a two-dimensional example. The results suggest that local mode birth of this sort injects too much energy into the vacuum to be a viable model of cosmological mode birth.Comment: 28 pages, 2 figures; v.2: added comments on defining energy, and reference

    Work function determination of promising electrode materials for thermionic energy converters

    Get PDF
    The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys
    corecore