20,998 research outputs found

    Hydrostatic pressure effects on the static magnetism in Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2}

    Full text link
    The effects of hydrostatic pressure on the static magnetism in Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2} are investigated by complementary electrical resistivity, ac magnetic susceptibility and single-crystal neutron diffraction measurements. A specific pressure-temperature phase diagram of Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2} is established. The structural phase transition, as well as the spin-density-wave order of Fe sublattice, is suppressed gradually with increasing pressure and disappears completely above 2.0 GPa. In contrast, the magnetic order of Eu sublattice persists over the whole investigated pressure range up to 14 GPa, yet displaying a non-monotonic variation with pressure. With the increase of the hydrostatic pressure, the magnetic state of Eu evolves from the canted antiferromagnetic structure in the ground state, via a pure ferromagnetic structure under the intermediate pressure, finally to a possible "novel" antiferromagnetic structure under the high pressure. The strong ferromagnetism of Eu coexists with the pressure-induced superconductivity around 2 GPa. The change of the magnetic state of Eu in Eu(Fe0.925_{0.925}Co0.075_{0.075})2_{2}As2_{2} upon the application of hydrostatic pressure probably arises from the modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu2+^{2+} moments tuned by external pressure.Comment: 9 pages, 6 figure

    Lipase-catalyzed Continuous Ring-opening Polymerization of ε-Caprolactone in a Packed-bed Reactor

    Get PDF
    A packed-bed reactor (PBR) system was developed for continuous lipase-catalyzed ring-opening polymerization of -caprolactone (ε-CL). The parameters affecting the poly(ε-caprolactone) (PCL) production in the PBR such as residence time, height to diameter (H/D) ratio, and monomer feed concentration were investigated. Monomer conversion of ε-CL increased with the increase of residence time, reached the highest (over 98 %) at the residence time of 12 min. And under this residence time it would almost not change even if the H/D ratio varied from 4 to 20 or the monomer concentration varied from 0.2 to 2.25 mol L–1. The number-average molecular mass (Mn) of PCL did not change in agreement with the monomer conversion, and approached the maximal values of 15600 g mol–1 with polydispersity index (PDI) of 2.1 under 20 min residence time, 12.0 H/D ratio and 1.75 mol L–1 monomer concentration. The Mn of PCL maintained around 15600 g mol–1 without appreciable loss during the long-term operation of 460 h with the PCL productivity of 19.15 g g–1 enzyme d–1)

    Analytical Results for a Hole in an Antiferromagnet

    Full text link
    The Green's function for a hole moving in an antiferromagnet is derived analytically in the long-wavelength limit. We find that the infrared divergence is eliminated in two and higher dimensions so that the quasiparticle weight is finite. Our results also suggest that the hole motion is polaronic in nature with a bandwidth proportional to t/Jexp[c(t/J)2]t/J \exp [-c (t/J)^2] (cc is a constant). The connection of the long-wavelength approximation to the first-order approximation in the cumulant expansion is also clarified.Comment: 12 papes, 2 figures available upon request, revte

    Spin-Wave and Electromagnon Dispersions in Multiferroic MnWO4 as Observed by Neutron Spectroscopy: Isotropic Heisenberg Exchange versus Anisotropic Dzyaloshinskii-Moriya Interaction

    Get PDF
    High resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) meV and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both, the collinear magnetic and paraelectric AF1 phase, and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.Comment: 8 pages, 6 figures, accepted for publication in Physical Review

    Phase diagram of Eu magnetic ordering in Sn-flux-grown Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals

    Get PDF
    The magnetic ground state of the Eu2+^{2+} moments in a series of Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} is established. The ground-state magnetic structure of the Eu2+^{2+} spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic c\mathit{c} direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around x\mathit{x} = 0.100(4), and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu2+^{2+} moments, which is mediated by the conduction d\mathit{d} electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu2+^{2+} and Fe2+^{2+} moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} single crystals with 0.10 \leqslant x\mathit{x} \leqslant 0.18, strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.Comment: 10 pages, 9 figure

    Mott-Peierls Transition in the extended Peierls-Hubbard model

    Full text link
    The one-dimensional extended Peierls-Hubbard model is studied at several band fillings using the density matrix renormalization group method. Results show that the ground state evolves from a Mott-Peierls insulator with a correlation gap at half-filling to a soliton lattice with a small band gap away from half-filling. It is also confirmed that the ground state of the Peierls-Hubbard model undergoes a transition to a metallic state at finite doping. These results show that electronic correlations effects should be taken into account in theoretical studies of doped polyacetylene. They also show that a Mott-Peierls theory could explain the insulator-metal transition observed in this material.Comment: 4 pages with 3 embedded eps figure

    Dusty Cometary Globules in W5

    Full text link
    We report the discovery of four dusty cometary tails around low mass stars in two young clusters belonging to the W5 star forming region. Fits to the observed emission profiles from 24 micron observations with the Spitzer Space Telescope give tail lifetimes < 30 Myr, but more likely < 5 Myr. This result suggests that the cometary phase is a short lived phenomenon, occurring after photoevaporation by a nearby O star has removed gas from the outer disk of a young low mass star (see also Balog et al. 2006; Balog et al. 2008).Comment: 11 pages, 3 figures. Accepted for publication to ApJ Letter

    Low dark current InAs/GaSb type-II superlattice infrared photodetectors with resonant tunnelling filters

    Full text link
    InAs/GaSb type-II strained-layer superlattice (SLS) photovoltaic infrared (IR) detectors are currently of great interest for mid- and long-wave IR detection. A novel technique of reducing detector dark current by inserting resonant tunnelling barriers into a conventional InAs/GaSb SLS is investigated. The GaSb/InAs/GaSb resonant tunnelling double barrier heterostructure was designed to be periodically inserted into a conventional InAs/GaSb SLS detector to block thermally excited electrons, while permitting photo-excited electrons to tunnel through. The measured dark current density of the tunnelling InAs/GaSb SLS detector in the entire negative bias range is lower than that of the conventional SLS detector by a factor of about 3.8 at 77 K. At 84 K, the Johnson-noise-limited detectivity of the tunnelling detector, measured at 4 µm, is 18% higher than that of the conventional detector. Both the conventional and the tunnelling SLS detectors demonstrated high-temperature operation, up to 300 K.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58092/2/d6_23_015.pd
    corecore