2,427 research outputs found

    Thermodynamic processes generated by a class of completely positive quantum operations

    Full text link
    An attempt toward the operational formulation of quantum thermodynamics is made by employing the recently proposed operations forming positive operator-valued measures for generating thermodynamic processes. The quantity of heat as well as the von Neumann entropy monotonically increases under the operations. The fixed point analysis shows that repeated applications of these operations to a given system transform from its pure ground state at zero temperature to the completely random state in the high temperature limit with intermediate states being generically out of equilibrium. It is shown that the Clausius inequality can be violated along the processes, in general. A bipartite spin-1/2 system is analyzed as an explicit example.Comment: 22 pages and 1 figure. Modern Physics Letters B, in pres

    Topological defect formation in quenched ferromagnetic Bose-Einstein condensates

    Full text link
    We study the dynamics of the quantum phase transition of a ferromagnetic spin-1 Bose-Einstein condensate from the polar phase to the broken-axisymmetry phase by changing magnetic field, and find the spontaneous formation of spinor domain walls followed by the creation of polar-core spin vortices. We also find that the spin textures depend very sensitively on the initial noise distribution, and that an anisotropic and colored initial noise is needed to reproduce the Berkeley experiment [Sadler et al., Nature 443, 312 (2006)]. The dynamics of vortex nucleation and the number of created vortices depend also on the manner in which the magnetic field is changed. We point out an analogy between the formation of spin vortices from domain walls in a spinor BEC and that of vortex-antivortex pairs from dark solitons in a scalar BEC.Comment: 10 pages, 11 figure

    Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile

    Get PDF
    The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. Hierarchical clustering heatmapping with principal component analysis for metabolic profiling was used in finding low levels of endogenous amino/organic acids clustered S. arboricola apart from the S. cerevisiae industrial strains. In sake fermentations, hybrid strains showed a mosaic profile of parental strains, while metabolic analysis suggested S. arboricola had a lower amino acid net uptake than S. cerevisiae. Additionally, this research found an increase in ethanolic fermentation from pyruvate and increased sulfur metabolism. Together, these results suggest S. arboricola is poised for in-depth metabolomic exploration in sake fermentation

    Kaluza-Klein bubble like structure and celestial sphere in inflationary universe

    Full text link
    We consider five dimensional deSitter spacetimes with a deficit angle due to the presence of a closed 2-brane and identify one dimension as an extra dimension. From the four dimensional viewpoint we can see that the spacetime has a structure similar to a Kaluza-Klein bubble of nothing, that is, four dimensional spacetime ends at the 2-brane. Since a spatial section of the full deSitter spacetime has the topology of a sphere, the boundary surface surrounds the remaining four dimensional spacetime, and can be considered as the celestial sphere. After the spacetime is created from nothing via an instanton which we describe, some four dimensional observers in it see the celestial sphere falling down, and will be in contact with a 2-brane attached on it.Comment: 5pages, 4figures, to be published in GR

    Knots in a Spinor Bose-Einstein Condensate

    Full text link
    We show that knots of spin textures can be created in the polar phase of a spin-1 Bose-Einstein condensate, and discuss experimental schemes for their generation and probe, together with their lifetime.Comment: 4 pages, 3 figure

    Topological classification of vortex-core structures of spin-1 Bose-Einstein condensates

    Full text link
    We classify vortex-core structures according to the topology of the order parameter space. By developing a method to characterize how the order parameter changes inside the vortex core. We apply this method to the spin-1 Bose-Einstein condensates and show that the vortex-core structures are classified by winding numbers that are locally defined in the core region. We also show that a vortex-core structure with a nontrivial winding number can be stabilized under a negative quadratic Zeeman effect.Comment: 16 pages, 6 figure

    A superfluid 4He interferometer operating near 2 K

    Full text link
    Matter-wave interferometers reveal some of the most fascinating phenomena of the quantum world. Phase shifts due to rotation (the Sagnac effect) for neutrons, free atoms and superfluid 3He reveal the connection of matter waves to a non-rotating inertial frame. In addition, phase shifts in electron waves due to magnetic vector potentials (the Aharonov-Bohm effect) show that physical states can be modified in the absence of classical forces. We report here the observation of interference induced by the Earth's rotation in superfluid 4He at 2 K, a temperature 2000 times higher than previously achieved with 3He. This interferometer, an analog of a dc-SQUID, employs a recently reported phenomenon wherein superfluid 4He exhibits quantum oscillations in an array of sub-micron apertures. We find that the interference pattern persists not only when the aperture array current-phase relation is a sinusoidal function characteristic of the Josephson effect, but also at lower temperatures where it is linear and oscillations occur by phase slips. The modest requirements for the interferometer (2 K cryogenics and fabrication of apertures at the level of 100nm) and its potential resolution suggest that, when engineering challenges such as vibration isolation are met, superfluid 4He interferometers could become important scientific probes.Comment: 8 pages, 2 figure

    Positions of Point-Nodes in Borocarbide Superconductor YNi2B2C

    Full text link
    To determine the superconducting gap function of YNi2B2C, we calculate the local density of states (LDOS) around a single vortex core with the use of Eilenberger theory and the band structure calculated by local density approximation assuming various gap structures with point-nodes at different positions. We also calculate the angular-dependent heat capacity in the vortex state on the basis of the Doppler-Shift method. Comparing our results with the STM/STS experiment, the angular-dependent heat capacity and thermal conductivity, we propose the gap-structure of YNi2B2C, which has the point-nodes and gap minima along . Our gap-structure is consistent with all results of angular-resolved experiments.Comment: 7 pages, 5 figure

    Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model.

    Get PDF
    BackgroundToca 511 (vocimagene amiretrorepvec) is a retroviral replicating vector encoding an optimized yeast cytosine deaminase (CD). Tumor-selective expression of CD converts the prodrug, 5-fluorocytosine (5-FC), into the active chemotherapeutic, 5-fluorouracil (5-FU). This therapeutic approach is being tested in a randomized phase II/III trial in recurrent glioblastoma and anaplastic astrocytoma (NCT0241416). The aim of this study was to identify the immune cell subsets contributing to antitumor immune responses following treatment with 5-FC in Toca 511-expressing gliomas in a syngeneic mouse model.MethodsFlow cytometry was utilized to monitor and characterize the immune cell infiltrate in subcutaneous Tu-2449 gliomas in B6C3F1 mice treated with Toca 511 and 5-FC.ResultsTumor-bearing animals treated with Toca 511 and 5-FC display alterations in immune cell populations within the tumor that result in antitumor immune protection. Attenuated immune subsets were exclusive to immunosuppressive cells of myeloid origin. Depletion of immunosuppressive cells temporally preceded a second event which included expansion of T cells which were polarized away from Th2 and Th17 in the CD4+ T cell compartment with concomitant expansion of interferon gamma-expressing CD8+ T cells. Immune alterations correlated with clearance of Tu-2449 subcutaneous tumors and T cell-dependent protection from future tumor challenge.ConclusionsTreatment with Toca 511 and 5-FC has a concentrated effect at the site of the tumor which causes direct tumor cell death and alterations in immune cell infiltrate, resulting in a tumor microenvironment that is more permissive to establishment of a T cell mediated antitumor immune response
    corecore