330 research outputs found

    CPT and Lorentz violation effects in hydrogen-like atoms

    Full text link
    Within the framework of Lorentz-violating extended electrodynamics, the Dirac equation for a bound electron in an external electromagnetic field is considered assuming the interaction with a CPT-odd axial vector background bÎŒb_\mu. The quasi-relativistic Hamiltonian is obtained using a 1/c1/c-series expansion. Relativistic Dirac eigenstates in a spherically-symmetric potential are found accurate up to the second order in b0b_0. b0b_0-induced CPT-odd corrections to the electromagnetic dipole moment operators of a bound electron are calculated that contribute to the anapole moment of the atomic orbital and may cause a specific asymmetry of the angular distribution of the radiation of a hydrogen atom.Comment: 13 pages, 1 figure; (5.14) is corrected to conform to the normalization convention for Laguerre polynomials adopted at present; minor grammatical change

    On de Sitter radiation via quantum tunneling

    Full text link
    We discuss why the tunneling picture does not necessarily lead to Hawking radiation from the de Sitter horizon. The experience with the condensed matter analogs of event horizon suggests that the de Sitter vacuum is stable against the Hawking radiation. On the other hand the detector immersed into the de Sitter background will detect the radiation which looks as thermal with the effective temperature twice larger than the Hawking temperature associated with the cosmological horizon.Comment: 15 pages, no figures, IJMPD style, version submitted to IJMP

    First Passage Time Densities in Non-Markovian Models with Subthreshold Oscillations

    Full text link
    Motivated by the dynamics of resonant neurons we consider a differentiable, non-Markovian random process x(t)x(t) and particularly the time after which it will reach a certain level xbx_b. The probability density of this first passage time is expressed as infinite series of integrals over joint probability densities of xx and its velocity x˙\dot{x}. Approximating higher order terms of this series through the lower order ones leads to closed expressions in the cases of vanishing and moderate correlations between subsequent crossings of xbx_b. For a linear oscillator driven by white or coloured Gaussian noise, which models a resonant neuron, we show that these approximations reproduce the complex structures of the first passage time densities characteristic for the underdamped dynamics, where Markovian approximations (giving monotonous first passage time distribution) fail

    Probing momentum-dependent scattering in uniaxially stressed Sr2_2RuO4_4 through the Hall effect

    Full text link
    Under in-plane uniaxial stress, the largest Fermi surface sheet of the correlated metal Sr2_2RuO4_4 undergoes a Lifshitz transition from an electron-like to an open geometry. We investigate the effects of this transition on transport through measurement of the longitudinal resistivity ρxx\rho_{xx} and the Hall coefficient RHR_\text{H}. At temperatures where scattering is dominated by electron-electron scattering, RHR_\text{H} becomes more negative across the Lifshitz transition, opposite to expectations from the change in Fermi surface topology. We show that this change in RHR_\text{H} is explainable only if scattering changes throughout the Brillouin zone, not just at the point in kk-space where the Lifshitz transition occurs. In a model of orbital-dependent scattering, the electron-electron scattering rate on sections of Fermi surface with xyxy orbital weight decreases dramatically. On the other hand, at temperatures where defect scattering dominates ρxx\rho_{xx} and RHR_\text{H} are essentially constant across the Lifshitz transition.Comment: 9 pages, 10 figure

    First Passage Time Densities in Resonate-and-Fire Models

    Full text link
    Motivated by the dynamics of resonant neurons we discuss the properties of the first passage time (FPT) densities for nonmarkovian differentiable random processes. We start from an exact expression for the FPT density in terms of an infinite series of integrals over joint densities of level crossings, and consider different approximations based on truncation or on approximate summation of this series. Thus, the first few terms of the series give good approximations for the FPT density on short times. For rapidly decaying correlations the decoupling approximations perform well in the whole time domain. As an example we consider resonate-and-fire neurons representing stochastic underdamped or moderately damped harmonic oscillators driven by white Gaussian or by Ornstein-Uhlenbeck noise. We show, that approximations reproduce all qualitatively different structures of the FPT densities: from monomodal to multimodal densities with decaying peaks. The approximations work for the systems of whatever dimension and are especially effective for the processes with narrow spectral density, exactly when markovian approximations fail.Comment: 11 pages, 8 figure

    Statistics of S-matrix poles in Few-Channel Chaotic Scattering: Crossover from Isolated to Overlapping Resonances

    Full text link
    We derive the explicit expression for the distribution of resonance widths in a chaotic quantum system coupled to continua via M equivalent open channels. It describes a crossover from the χ2\chi^2 distribution (regime of isolated resonances) to a broad power-like distribution typical for the regime of overlapping resonances. The first moment is found to reproduce exactly the Moldauer-Simonius relation between the mean resonance width and the transmission coefficient. This fact may serve as another manifestation of equivalence between the spectral and the ensemble averaging.Comment: 4 two-column pages, RevTex. text is slightly modified; some misprints are correcte

    The non-equilibrium steady state of sparse systems with nontrivial topology

    Full text link
    We study the steady state of a multiply-connected system that is driven out of equilibrium by a sparse perturbation. The prototype example is an NN-site ring coupled to a thermal bath, driven by a stationary source that induces transitions with log-wide distributed rates. An induced current arises, which is controlled by the strength of the driving, and an associated topological term appears in the expression for the energy absorption rate. Due to the sparsity, the crossover from linear response to saturation is mediated by an intermediate regime, where the current is exponentially small in N\sqrt{N}, which is related to the work of Sinai on "random walk in a random environment".Comment: 6 pages, 4 figure

    Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology

    Full text link
    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davis theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir like fashion, that might involve the dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17 - 21, 200

    Dialectics and Implications of Natural Neurotropic Autoantibodies in Neurological Disease and Rehabilitation

    Get PDF
    The role of natural idiotypic (Id-Abs) and anti-idiotypic (AId-Abs) autoantibodies against neuro-antigens observed in different neurological disorders is not fully understood. In particular, limited experimental evidence has been provided concerning the qualitative and quantitative serological response after acute injuries of the central nervous system or during chronic mental diseases. In this study, we analyzed the specific Id-Abs and AId-Abs serological reactivities against 4 neuro-antigens in a large population of patients with ischemic stroke, schizophrenia, as well as healthy individuals. Patients with ischemic stroke were tested at different time points following the acute stroke episode and a correlation was attempted between autoantibodies response and different patterns of functional recovery. Results showed variable and detectable Id-Abs and AId-Abs in different proportions of all three populations of subjects. Among patients with different functional recovery after ischemic stroke, a difference in time-related trends of Id-Abs and AId-Abs was encountered. Our observations suggest that changes in the production of natural neurotropic Abs may engender a positive homeostatic, beside a possible pathogenic effect, in specific neurological disorders

    Weakly-nonlocal Symplectic Structures, Whitham method, and weakly-nonlocal Symplectic Structures of Hydrodynamic Type

    Full text link
    We consider the special type of the field-theoretical Symplectic structures called weakly nonlocal. The structures of this type are in particular very common for the integrable systems like KdV or NLS. We introduce here the special class of the weakly nonlocal Symplectic structures which we call the weakly nonlocal Symplectic structures of Hydrodynamic Type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of "averaging" of the weakly nonlocal Symplectic structures. The averaging procedure gives the weakly nonlocal Symplectic Structure of Hydrodynamic Type for the corresponding Whitham system. The procedure gives also the "action variables" corresponding to the wave numbers of mm-phase solutions of initial system which give the additional conservation laws for the Whitham system.Comment: 64 pages, Late
    • 

    corecore