33,738 research outputs found

    Heat dissipation of high rate Li-SOCl sub 2 primary cells

    Get PDF
    The heat dissipation problem occurring in the lithium thionyl chloride cells discharged at relatively high rates under normal discharge conditions is examined. Four heat flow paths were identified, and the thermal resistances of the relating cell components along each flow path were accordingly calculated. From the thermal resistance network analysis, it was demonstrated that about 90 percent of the total heat produced within the cell should be dissipated along the radial direction in a spirally wound cell. In addition, the threshold value of the heat generation rate at which cell internal temperature could be maintained below 100 C, was calculated from total thermal resistance and found to be 2.9 W. However, these calculations were made only at the cell components' level, and the transient nature of the heat accumulation and dissipation was not considered. A simple transient model based on the lumped-heat-capacity concept was developed to predict the time-dependent cell temperature at different discharge rates. The overall objective was to examine the influence of cell design variable from the heat removal point of view under normal discharge conditions and to make recommendations to build more efficient lithium cells

    Monopoles and Knots in Skyrme Theory

    Get PDF
    We show that the Skyrme theory actually is a theory of monopoles which allows a new type of solitons, the topological knots made of monopole-anti-monopole pair,which is different from the well-known skyrmions. Furthermore, we derive a generalized Skyrme action from the Yang-Mills action of QCD, which we propose to be an effective action of QCD in the infra-red limit. We discuss the physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres

    High-frequency sound propagation in a spatially varying mean flow

    Get PDF
    An equation for acoustic ray paths in a spatially varying mean flow was examined to determine some of the characteristics of the flow gradient effects on sound propagation. In a potential flow, the acoustic rays are deflected in the direction of increasing mean flow, and the gradient of the mean flow speed is the dominant factor causing the ray deflection. In contrast, in a sheared mean flow, the vorticity is the dominant factor in deflection of the acoustic rays

    Dilaton as a Dark Matter Candidate and its Detection

    Full text link
    Assuming that the dilaton is the dark matter of the universe, we propose an experiment to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter of the universe. With this we calculate the dilaton detection power in the resonant cavity, and compare it with the axion detection power in similar resonant cavity experiment.Comment: 23 pages, 2 figure

    Dilatonic Dark Matter and Unified Cosmology -- a New Paradigm --

    Get PDF
    We study the possibility that the dilaton -- the fundamental scalar field which exists in all the existing unified field theories -- plays the role of the dark matter of the universe. We find that the condition for the dilaton to be the dark matter strongly restricts its mass to be around 0.5 keV or 270 MeV. For the other mass ranges, the dilaton either undercloses or overcloses the universe. The 0.5 keV dilaton has the free-streaming distance of about 1.4 Mpc and becomes an excellent candidate of a warm dark matter, while the 270 MeV one has the free-streaming distance of about 7.4 pc and becomes a cold dark matter. We discuss the possible ways to detect the dilaton experimentallyComment: 19 pages, 5 figure, Talk given at the IIth RESCEU International Symposium on Dark Matter in the Universe and its Direct Detections, 1996. Proceedings published by Academic Press, Tokyo, edited by K sat

    First Principles Study of Work Functions of Double Wall Carbon Nanotubes

    Full text link
    Using first-principles density functional calculations, we investigated work functions (WFs) of thin double-walled nanotubes (DWNTs) with outer tube diameters ranging from 1nm to 1.5nm. The results indicate that work function change within this diameter range can be up to 0.5 eV, even for DWNTs with same outer diameter. This is in contrast with single-walled nanotubes (SWNTs) which show negligible WF change for diameters larger than 1nm. We explain the WF change and related charge redistribution in DWNTs using charge equilibration model (CEM). The predicted work function variation of DWNTs indicates a potential difficulty in their nanoelectronic device applications.Comment: 11 pages, 3 figures, to appear as rapid communication on Physical Review

    Geometrization of the Gauge Connection within a Kaluza-Klein Theory

    Full text link
    Within the framework of a Kaluza-Klein theory, we provide the geometrization of a generic (Abelian and non-Abelian) gauge coupling, which comes out by choosing a suitable matter fields dependence on the extra-coordinates. We start by the extension of the Nother theorem to a multidimensional spacetime being the direct sum of a 4-dimensional Minkowski space and of a compact homogeneous manifold (whose isometries reflect the gauge symmetry); we show, how on such a ``vacuum'' configuration, the extra-dimensional components of the field momentum correspond to the gauge charges. Then we analyze the structure of a Dirac algebra as referred to a spacetime with the Kaluza-Klein restrictions and, by splitting the corresponding free-field Lagrangian, we show how the gauge coupling terms outcome.Comment: 10 pages, no figure, to appear on Int. Journ. Theor. Phy

    Simultaneously imaging of dielectric properties and topography in a PbTiO_3 crystal by near-field scanning microwave microscopy

    Full text link
    We use a near-field scanning microwave microscope to simultaneously image the dielectric constant, loss tangent, and topography in a PbTiO_3 crystal. By this method, we study the effects of the local dielectric constant and loss tangent in the geometry of periodic domains on the measured resonant frequency, and quality factor. We also carry out theoretical calculations and the results agree well with the experimental data and reveal the anisotropic nature of dielectric constant
    • …
    corecore