research

Heat dissipation of high rate Li-SOCl sub 2 primary cells

Abstract

The heat dissipation problem occurring in the lithium thionyl chloride cells discharged at relatively high rates under normal discharge conditions is examined. Four heat flow paths were identified, and the thermal resistances of the relating cell components along each flow path were accordingly calculated. From the thermal resistance network analysis, it was demonstrated that about 90 percent of the total heat produced within the cell should be dissipated along the radial direction in a spirally wound cell. In addition, the threshold value of the heat generation rate at which cell internal temperature could be maintained below 100 C, was calculated from total thermal resistance and found to be 2.9 W. However, these calculations were made only at the cell components' level, and the transient nature of the heat accumulation and dissipation was not considered. A simple transient model based on the lumped-heat-capacity concept was developed to predict the time-dependent cell temperature at different discharge rates. The overall objective was to examine the influence of cell design variable from the heat removal point of view under normal discharge conditions and to make recommendations to build more efficient lithium cells

    Similar works