354 research outputs found

    System and market failures: the unavailability of magnesium sulphate for the treatment of eclampsia and pre-eclampsia in Mozambique and Zimbabwe.

    Get PDF
    Low cost and effective drugs, such as magnesium sulphate, need to be included in initiatives to improve access to essential medicines in Afric

    Solid State NMR Spectroscopy/Imaging in Situ Measuring Devices and Methods for Calibration and Determining One or More Quantitative Properties of a Target Sample

    Get PDF
    In situ measuring devices, methods of making the same, and methods of using the same are provided herein. The in situ measuring devices can include a capillary tube having a reference material sealed inside the capillary tube, where the capillary tube is positioned inside of a solid state or MAS NMR rotor. A target sample can also be positioned in the interior of the solid state or MAS NMR rotor but is sequestered from the reference material by a capillary tube wall. The in situ measuring devices can be used in solid state MAS NMR spectroscopy to quantify one or more parameters of a target sample, such as the quantity of a sample, chemical identity of a sample, or temperature of a sample

    Small Angle Neutron Scattering from D2O–H2O Nanodroplets and Binary Nucleation Rates in A Supersonic Nozzle

    Get PDF
    Small angle neutron scattering (SANS) experiments were used to characterize binary nanodroplets composed of D2O and H2O. The droplets were formed by expanding dilute mixtures of condensible vapor in a N2 carrier gas through a supersonic nozzle, while maintaining the onset of condensation at a fixed position in the nozzle. It is remarkable, given the small coherent scattering length density of light water, that even the pure H2O aerosol gave a scattering signal above background. The scattering spectra were analyzed assuming a log-normal distribution of droplets. On average, the geometric radius of the nanodroplets rg was rg=13 (±1) nm, the polydispersity ln σr was ln σr=0.19 (±0.07), and the number density N was N=(2±0.2)⋅1011 cm−3. The aerosol volume fractions derived from the SANS measurements are consistent with those derived from the pressure trace experiments, suggesting that the composition of the droplets was close to that of the initial condensible mixture. A quantitative analysis of the scattering spectra as a function of the isotopic composition gave further evidence that the binary droplets exhibit ideal mixing behavior. Because both the stagnation temperature T0 and the location of onset were fixed, the temperature corresponding to the maximum nucleation rate was constant at TJ max=229 (±1) K. Thus, the experiments let us estimate the isothermal peak nucleation rates as a function of the isotopic composition. The nucleation rates were found to be essentially constant with Jmax equal to (3.6±0.5)⋅1016 cm−3 s−1 at a mean supersaturation of 44 (±3)

    NMR Studies of Loaded Microspheres

    Get PDF
    Porous-wall hollow glass microspheres (PWHGMs) are a novel form of glass materials that consist of 1-μm-thick porous silica shells, 20-100 μm in diameter, with a hollow cavity in the center. Utilizing the central cavity for material storage and the porous walls for controlled release is a unique combination that renders PWHGMs a superior vehicle for targeted drug delivery. In this study, NMR spectroscopy was used to characterize PWHGMs for the first time. A vacuum-based loading system was developed to load PWHGMs with various compounds followed by a washing procedure that uses solvents immiscible with the target material. Immiscible binary model systems (chloroform/water, n-dodecane/water), as well as the hydrolysis of isopropyl acetate, were investigated to obtain NMR evidence for material loading into PWHGMs and their subsequent release to the surrounding solutions. The NMR peaks of the loaded materials were distinguishable from the NMR peaks of the materials in the surrounding solution. The formation of the reaction product isopropanol provided evidence of encounters of isopropyl acetate in the microspheres and concentrated H2SO4 added to the surrounding solution. Also, microspheres loaded with H2O were suspended in D2O and monitored to obtain quantitative release kinetics of H2O encapsulated in PWHGMs. A five-parameter double-exponential curve fit of experimental signal intensity data as a function of time indicated two release rates for H2O encapsulated in PWHGMs with time constants of 18 - 20 minutes and 160 minutes. The results demonstrate that NMR is a particularly useful tool to study developments and applications of PWHGMs in targeted drug delivery

    H2O–D2O Condensation in A Supersonic Nozzle

    Get PDF
    We examined the condensation of H2O, D2O, and four intermediate mixtures (20, 40, 60, and 80 mol % D2O) in a supersonic nozzle. Because the physical and chemical properties of protonated and deuterated water are so similar, this system is ideal for studying the change in condensation behavior as a function of condensible composition. In our experiments dilute mixtures of condensible vapor in N2 are expanded from three different stagnation temperatures resulting in a broad range of onset temperatures (190–238 K) and pressures (27–787 kPa). For a fixed stagnation temperature, the partial pressure required to maintain the onset of condensation at a given location or temperature in the nozzle is consistently higher for H2O than for D2O. In contrast, the supersaturation at fixed onset temperature is usually higher for D2O than for H2O and this difference increases toward lower temperature. The partial pressure at onset for the intermediate mixtures varied linearly between the values observed for the pure components in this ideal system

    In Situ NMR Parameter Monitoring Systems and Methods for Measuring PH and Temperature

    Get PDF
    Devices and methods are provided for measuring temperatures and pHs of a sample in situ using NMR spectroscopy, and for sealing one or more ends of a capillary tube after a reference material has been added to the capillary tube, which is used in an in situ NMR temperature measurement device. A method for measuring a pH of a sample in situ using NMR spectroscopy includes providing an in situ NMR pH measurement device. This device includes a sample housing member configured to house a target sample, at least one pH sensor configured to exhibit an NMR spectral change due to a change in pH value of the target sample, and a pH sensor containment member configured to house the at least one pH sensor. The target sample is added to the sample housing member. NMR spectra are obtained to then determine the pH of the target sample

    Capillary-Tube Package Devices for the Quantitative Performance Evaluation of Nuclear Magnetic Resonance Spectrometers and Pulse Sequences

    Get PDF
    With the increased sensitivity of modern nuclear magnetic resonance (NMR) spectrometers, the minimum amount needed for chemical-shift referencing of NMR spectra has decreased to a point where a few microliters can be sufficient to observe a reference signal. The reduction in the amount of required reference material is the basis for the NMR Capillary-tube Package (CapPack) platform that utilizes capillary tubes with inner diameters smaller than 150 µm as NMR-tube inserts for external reference standards. It is shown how commercially available electrophoresis capillary tubes with outer diameters of 360 µm are filled with reference liquids or solutions and then permanently sealed by the arc discharge plasma of a commercially available fusion splicer normally employed for joining optical fibers. The permanently sealed capillaries can be used as external references for chemical-shift, signal-to-noise, resolution, and concentration calibration. Combining a number of permanently sealed capillaries to form CapPack devices leads to additional applications such as performance evaluation of NMR spectrometers and NMR pulse sequences. A 10-capillary-tube side-by-side Gradient CapPack device is used in combination with one or two constant gradients, produced by room-temperature shim coils, to monitor the excitation profiles of shaped pulses. One example illustrates the performance of hyperbolic secant (sech) pulses in the EXponentially Converging Eradication Pulse Train (EXCEPT) solvent suppression sequence. The excitation profile of the pulse sequence is obtained in a single gradient NMR experiment. A clustered T1 CapPack device is introduced consisting of a coaxial NMR-tube insert that holds seven capillary tubes filled with aqueous solutions of different concentrations of the paramagnetic relaxation agent copper(ii) sulfate (CuSO4). The different CuSO4 concentrations lead to spin-lattice relaxation times in the seven capillary tubes that cover a range which extends to more than an order of magnitude. Clustered T1 CapPack devices are best suited to quantify the effects that relaxation has on magnetizations and coherences during the execution of NMR experiments, which is demonstrated for the order-of-magnitude T1 insensitivity of signal suppression with EXCEPT

    InGaAs MOMBE -- system drift and material quality

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29659/1/0000748.pd

    GALEX, Optical and IR Light Curves of MQ Dra: UV Excesses at Low Accretion Rates

    Full text link
    Ultraviolet light curves constructed from NUV and FUV detectors on GALEX reveal large amplitude variations during the orbital period of the Low Accretion Rate Polar MQ Dra (SDSSJ1553+55). This unexpected variation from a UV source is similar to that seen and discussed in the Polar EF Eri during its low state of accretion, even though the accretion rate in MQ Dra is an order of magnitude lower than even the low state of EF Eri. The similarity in phasing of the UV and optical light curves in MQ Dra imply a similar location for the source of light. We explore the possibilities of hot spots and cyclotron emission with simple models fit to the UV, optical and IR light curves of MQ Dra. To match the GALEX light curves with a single temperature circular hot spot requires different sizes of spots for the NUV and FUV, while a cyclotron model that can produce the optical harmonics with a magnetic field near 60 MG requires multipoles with fields > 200 MG to match the UV fluxes.Comment: accepted for ApJ; 15 pages, 7 tables, 8 fig

    Technical aspects of InGaAs MOMBE -- shutter action, system drift, and material quality

    Full text link
    Lattice matched InxGa1 - x As films were deposited on InP substrates using metalorganic molecular beam epitaxy (MOMBE) with trimethylindium (TMIn), triethylgallium (TEGa) and a solid arsenic source. The effect of growth temperature and molecular beam composition on growth rate and crystal composition was investigated. A long term drift of the molecular beam composition and an increasing difference between temperature readings of the thermocouple and the pyrometer were observed. The corrected data show a linear dependence of crystal composition on molecular beam composition. Shutter action on TMIn and TEGa was investigated. The results show the adverse effect of solely using the shutters to control the metalorganic molecular beam, leading to inferior material quality and rough surface morphology. Material grown in the optimized process consistently showed electron mobilities of [mu]300 [approximate] 9000 cm2/V[middle dot]s and [mu]77 [approximate] 35,000 cm2/[middle dot]s at 1.2 x 1015 cm-3 n-type background concentration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29421/1/0000497.pd
    • …
    corecore