7,483 research outputs found
Could Distance be a Proxy for Severity-of-Illness? A Comparison of Hospital Costs in Distant and Local Patients.
We test the hypothesis that hospital costs, after adjusting for DRG mix, are higher in distant patients than in local patients. Data were obtained from the Washington State Commission Hospital Abstract Reporting System (CHARS) and included all patients discharged from 15 metropolitan hospitals in the state of Washington during fiscal year 1987 (N = 181,072)
A Bayesian approach to the follow-up of candidate gravitational wave signals
Ground-based gravitational wave laser interferometers (LIGO, GEO-600, Virgo
and Tama-300) have now reached high sensitivity and duty cycle. We present a
Bayesian evidence-based approach to the search for gravitational waves, in
particular aimed at the followup of candidate events generated by the analysis
pipeline. We introduce and demonstrate an efficient method to compute the
evidence and odds ratio between different models, and illustrate this approach
using the specific case of the gravitational wave signal generated during the
inspiral phase of binary systems, modelled at the leading quadrupole Newtonian
order, in synthetic noise. We show that the method is effective in detecting
signals at the detection threshold and it is robust against (some types of)
instrumental artefacts. The computational efficiency of this method makes it
scalable to the analysis of all the triggers generated by the analysis
pipelines to search for coalescing binaries in surveys with ground-based
interferometers, and to a whole variety of signal waveforms, characterised by a
larger number of parameters.Comment: 9 page
Aerodynamic Effects of High Turbulence Intensity on a Variable-Speed Power-Turbine Blade With Large Incidence and Reynolds Number Variations
The effects of high inlet turbulence intensity on the aerodynamic performance of a variable speed power turbine blade are examined over large incidence and Reynolds number ranges. These results are compared to previous measurements made in a low turbulence environment. Both high and low turbulence studies were conducted in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. The purpose of the low inlet turbulence study was to examine the transitional flow effects that are anticipated at cruise Reynolds numbers. The current study extends this to LPT-relevant turbulence levels while perhaps sacrificing transitional flow effects. Assessing the effects of turbulence at these large incidence and Reynolds number variations complements the existing database. Downstream total pressure and exit angle data were acquired for 10 incidence angles ranging from +15.8deg to 51.0deg. For each incidence angle, data were obtained at five flow conditions with the exit Reynolds number ranging from 2.1210(exp 5) to 2.1210(exp 6) and at a design exit Mach number of 0.72. In order to achieve the lowest Reynolds number, the exit Mach number was reduced to 0.35 due to facility constraints. The inlet turbulence intensity, Tu, was measured using a single-wire hotwire located 0.415 axial-chord upstream of the blade row. The inlet turbulence levels ranged from 8 to 15 percent for the current study. Tu measurements were also made farther upstream so that turbulence decay rates could be calculated as needed for computational inlet boundary conditions. Downstream flow field measurements were obtained using a pneumatic five-hole pitch/yaw probe located in a survey plane 7 percent axial chord aft of the blade trailing edge and covering three blade passages. Blade and endwall static pressures were acquired for each flow condition as well. The blade loading data show that the suction surface separation that was evident at many of the low Tu conditions has been eliminated. At the extreme positive and negative incidence angles, the data show substantial differences in the exit flow field. These differences are attributable to both the higher inlet Tu directly and to the thinner inlet endwall boundary layer that the turbulence grid imposes
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.8310 (exp 5) to 0.8510(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition
Applications of advanced diffractive optical elements
Digital Optics Corporation is a UNC-Charlotte spin-off company, established to transfer technology developed at UNC-Charlotte for the design and manufacture Computer Generated Holograms (CGH's) and to market products based on CGH technology. DOC acquired core technologies from UNC-Charlotte including: (1) a CGH encoding process that can provide holograms with extremely high diffraction efficiency; (2) a low cost, high precision CGH manufacturing process; and (3) extensive holographic and refractive element design capabilities for design and evaluation of complex optical systems. These technologies have been used to design and/or manufacture optical components for a variety of applications including: (1) generation of Spot arrays; (2) fiber optic coupling elements; (3) optical interconnects between VLSI chips within and between multichip modules; and (4) imaging systems for head-mounted displays (HMD's)
Factors influencing properties of fermented reconstructed milk
Publication authorized February 10, 1930."The data presented in this bulletin were taken from a thesis submitted by the junior author in fulfillment of the thesis requirement for the degree of Master of Arts in the Graduate School, of the University of Missouri, 1929"--P. [3].Includes bibliographical references (pages 13-14)
Validation of a Load-Based Testing Method for Characterizing Residential Air-Conditioner Performance
Seasonal performance assessments of air-conditioning and heat-pump systems are typically carried out based on performance measurement of equipment in a test laboratory. The performance ratings that arise from these assessments are important in providing information to consumers, and in influencing policymakers to determine appropriate incentives for high-efficiency equipment in the marketplace. The current testing and rating approach for performance evaluation of residential air-conditioning and heat-pump systems is based on steady-state performance measurements, with a degradation coefficient to account for the cycling losses that occur during part-load operating conditions. However, this current methodology fails to appropriately characterize the true performance characteristics of these systems in the field, and as a consequence, SEER (seasonal energy efficiency ratio) improvements have not resulted in proportional savings in energy. As an alternative, a load-based testing methodology has been developed with the motivation of capturing realistic equipment performance in a laboratory setting while operating similar to field application conditions. In this approach, the equipment responds to a simulated virtual building load, and the system dynamic performance is measured with its integrated controls and thermostat. However, there is a lack of field-testing data to characterize how well the load-based testing approach captures equipment performance and dynamic behavior compared to a typical field application. To fill this gap, a 3-ton heat pump system was tested within the Residential Home Ecosystem at the Helix Innovation Center where a 2-story house is located within an environmental chamber that can vary external ambient temperature and humidity conditions. During tests, the house was subjected to cooling loads resulting from different outdoor temperature conditions, and its air conditioning system responded accordingly. Similar cooling equipment was also tested within psychrometric chambers at the Ray W. Herrick Laboratories using the load-based testing methodology. A comparison of the test equipment performance and its dynamic behavior in cooling mode between testing performed at the Helix Center and at the Herrick Laboratories is presented in this paper
- …