10 research outputs found

    Water balance creates a threshold in soil pH at the global scale

    Full text link
    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate

    Feasibility of a web-based neurocognitive battery for assessing cognitive function in critical illness survivors

    Get PDF
    © 2019 Honarmand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Purpose To assess the feasibility of using a widely validated, web-based neurocognitive test battery (Cambridge Brain Sciences, CBS) in a cohort of critical illness survivors. Methods We conducted a prospective observational study in two intensive care units (ICUs) at two tertiary care hospitals. Twenty non-delirious ICU patients who were mechanically ventilated for a minimum of 24 hours underwent cognitive testing using the CBS battery. The CBS consists of 12 cognitive tests that assess a broad range of cognitive abilities that can be categorized into three cognitive domains: reasoning skills, short-term memory, and verbal processing. Patients underwent cognitive assessment while still in the ICU (n = 13) or shortly after discharge to ward (n = 7). Cognitive impairment on each test was defined as a raw score that was 1.5 or more standard deviations below age- and sex-matched norms from healthy controls. Results We found that all patients were impaired on at least two tests and 18 patients were impaired on at least three tests. ICU patients had poorer performance on all three cognitive domains relative to healthy controls. We identified testing related fatigue due to battery length as a feasibility issue of the CBS test battery. Conclusions Use of a web-based patient-administered cognitive test battery is feasible and can be used in large-scale studies to identify domain-specific cognitive impairment in critical illness survivors and the temporal course of recovery over time

    Calcium-mediated stabilisation of soil organic carbon

    No full text
    corecore