206 research outputs found

    Viral diversity and prevalence gradients in North American Pacific Coast grasslands

    Get PDF
    Host-pathogen interactions may be governed by the number of pathogens coexisting within an individual host (i.e., coinfection) and among different hosts, although most sampling in natural systems focuses on the prevalence of single pathogens and/or single hosts. We measured the prevalence of four barley and cereal yellow dwarf viruses (B/CYDVs) in three grass species at 26 natural grasslands along a 2000-km latitudinal gradient in the western United States and Canada. B/CYDVs are aphid-vectored RNA viruses that cause one of the most prevalent of all plant diseases worldwide. Pathogen prevalence and coinfection were uncorrelated, suggesting that different forces likely drive them. Coinfection, the number of viruses in a single infected host (alpha diversity), did not differ among host species but increased roughly twofold across our latitudinal transect. This increase in coinfection corresponded with a decline in among-host pathogen turnover (beta diversity), suggesting that B/CYDVs in northern populations experience less transmission limitation than in southern populations. In contrast to pathogen diversity, pathogen prevalence was a function of host identity as well as biotic and abiotic environmental conditions. Prevalence declined with precipitation and increased with soil nitrate concentration, an important limiting nutrient for hosts and vectors of B/CYDVs. This work demonstrates the need for further studies of processes governing coinfection, and the utility of applying theory developed to explain diversity in communities of free-living organisms to pathogen systems

    Non-random biodiversity loss underlies predictable increases in viral disease prevalence

    Get PDF
    Disease dilution (reduced disease prevalence with increasing biodiversity) has been described for many different pathogens. Although the mechanisms causing this phenomenon remain unclear, the disassembly of communities to predictable subsets of species, which can be caused by changing climate, land use or invasive species, underlies one important hypothesis. In this case, infection prevalence could reflect the competence of the remaining hosts. To test this hypothesis, we measured local host species abundance and prevalence of four generalist aphid-vectored pathogens (barley and cereal yellow dwarf viruses) in a ubiquitous annual grass host at 10 sites spanning 2000 km along the North American West Coast. In laboratory and field trials, we measured viral infection as well as aphid fecundity and feeding preference on several host species. Virus prevalence increased as local host richness declined. Community disassembly was non-random: ubiquitous hosts dominating species-poor assemblages were among the most competent for vector production and virus transmission. This suggests that non-random biodiversity loss led to increased virus prevalence. Because diversity loss is occurring globally in response to anthropogenic changes, such work can inform medical, agricultural and veterinary disease research by providing insights into the dynamics of pathogens nested within a complex web of environmental forces

    More salt, please:global patterns, responses, and impacts of foliar sodium in grasslands

    Get PDF
    Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site‐level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous‐dominated systems

    Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe

    Get PDF
    Soil microorganisms are critical to ecosystem functioning and the maintenance of soil fertility. However, despite global increases in the inputs of nitrogen (N) and phosphorus (P) to ecosystems due to human activities, we lack a predictive understanding of how microbial communities respond to elevated nutrient inputs across environmental gradients. Here we used high-throughput sequencing of marker genes to elucidate the responses of soil fungal, archaeal, and bacterial communities using an N and P addition experiment replicated at 25 globally distributed grassland sites. We also sequenced metagenomes from a subset of the sites to determine how the functional attributes of bacterial communities change in response to elevated nutrients. Despite strong compositional differences across sites, microbial communities shifted in a consistent manner with N or P additions, and the magnitude of these shifts was related to the magnitude of plant community responses to nutrient inputs. Mycorrhizal fungi and methanogenic archaea decreased in relative abundance with nutrient additions, as did the relative abundances of oligotrophic bacterial taxa. The metagenomic data provided additional evidence for this shift in bacterial life history strategies because nutrient additions decreased the average genome sizes of the bacterial community members and elicited changes in the relative abundances of representative functional genes. Our results suggest that elevated N and P inputs lead to predictable shifts in the taxonomic and functional traits of soil microbial communities, including increases in the relative abundances of faster-growing, copiotrophic bacterial taxa, with these shifts likely to impact belowground ecosystems worldwide

    General Destabilizing Effects of Eutrophication on Grassland Productivity at Multiple Spatial Scales

    Get PDF
    Eutrophication is a widespread environmental change that usually reduces the stabilizing effect of plant diversity on productivity in local communities. Whether this effect is scale dependent remains to be elucidated. Here, we determine the relationship between plant diversity and temporal stability of productivity for 243 plant communities from 42 grasslands across the globe and quantify the effect of chronic fertilization on these relationships. Unfertilized local communities with more plant species exhibit greater asynchronous dynamics among species in response to natural environmental fluctuations, resulting in greater local stability (alpha stability). Moreover, neighborhood communities that have greater spatial variation in plant species composition within sites (higher beta diversity) have greater spatial asynchrony of productivity among communities, resulting in greater stability at the larger scale (gamma stability). Importantly, fertilization consistently weakens the contribution of plant diversity to both of these stabilizing mechanisms, thus diminishing the positive effect of biodiversity on stability at differing spatial scales. Our findings suggest that preserving grassland functional stability requires conservation of plant diversity within and among ecological communities

    Grand challenges in biodiversity-ecosystem functioning research in the era of science-policy platforms require explicit consideration of feedbacks

    Get PDF
    Feedbacks are an essential feature of resilient socio-economic systems, yet the feedbacks between biodiversity, ecosystem services and human wellbeing are not fully accounted for in global policy efforts that consider future scenarios for human activities and their consequences for nature. Failure to integrate feedbacks in our knowledge frameworks exacerbates uncertainty in future projections and potentially prevents us from realizing the full benefits of actions we can take to enhance sustainability. We identify six scientific research challenges that, if addressed, could allow future policy, conservation and monitoring efforts to quantitatively account for ecosystem and societal consequences of biodiversity change. Placing feedbacks prominently in our frameworks would lead to (i) coordinated observation of biodiversity change, ecosystem functions and human actions, (ii) joint experiment and observation programmes, (iii) more effective use of emerging technologies in biodiversity science and policy, and (iv) a more inclusive and integrated global community of biodiversity observers. To meet these challenges, we outline a five-point action plan for collaboration and connection among scientists and policymakers that emphasizes diversity, inclusion and open access. Efforts to protect biodiversity require the best possible scientific understanding of human activities, biodiversity trends, ecosystem functions and—critically—the feedbacks among them

    Nitrogen Increases Early-Stage and Slows Late-Stage Decomposition Across Diverse Grasslands

    Get PDF
    To evaluate how increased anthropogenic nutrient inputs alter carbon cycling in grasslands, we conducted a litter decomposition study across 20 temperate grasslands on three continents within the Nutrient Network, a globally distributed nutrient enrichment experiment We determined the effects of addition of experimental nitrogen (N), phosphorus (P) and potassium plus micronutrient (Kμ) on decomposition of a common tree leaf litter in a long-term study (maximum of 7 years; exact deployment period varied across sites). The use of higher order decomposition models allowed us to distinguish between the effects of nutrients on early- versus late-stage decomposition. Across continents, the addition of N (but not other nutrients) accelerated early-stage decomposition and slowed late-stage decomposition, increasing the slowly decomposing fraction by 28% and the overall litter mean residence time by 58%. Synthesis. Using a novel, long-term cross-site experiment, we found widespread evidence that N enhances the early stages of above-ground plant litter decomposition across diverse and widespread temperate grassland sites but slows late-stage decomposition. These findings were corroborated by fitting the data to multiple decomposition models and have implications for N effects on soil organic matter formation. For example, following N enrichment, increased microbial processing of litter substrates early in decomposition could promote the production and transfer of low molecular weight compounds to soils and potentially enhance the stabilization of mineral-associated organic matter. By contrast, by slowing late-stage decomposition, N enrichment could promote particulate organic matter (POM) accumulation. Such hypotheses deserve further testing

    Nutrient colimitation of primary producer communities

    Get PDF
    Abstract Synergistic interactions between multiple limiting resources are common, highlighting the importance of co-limitation as a constraint on primary production. Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources, which are predicted by various theories. Herein, we summarise multiple-resource limitation responses in plant communities using a dataset of 641 studies that applied factorial addition of nitrogen (N) and phosphorus (P) in freshwater, marine and terrestrial systems. We found that more than half of the studies displayed some type of synergistic response to N and P addition. We found support for strict definitions of co-limitation in 28% of the studies: i.e. community biomass responded to only combined N and P addition, or to both N and P when added separately. Our results highlight the importance of interactions between N and P in regulating primary producer community biomass and point to the need for future studies that address the multiple mechanisms that could lead to different types of co-limitation
    corecore