22,604 research outputs found

    DEMAND FOR FEED GRAINS AND CONCENTRATES BY LIVESTOCK CATEGORY

    Get PDF
    Livestock feed demand is a collection of derived feed demands by various livestock categories. A structural understanding of demand for feed grains and total concentrates requires knowledge of separate feed demand relationships for each major livestock category. While a number of aggregate livestock feed demand relationships have been estimated, little is known about the structure of feed demand by livestock type. In this study unique livestock feed demand relationships for feed grains and total concentrates are estimated for each of seven major livestock categories. The estimated relationships show substantial differences in elasticities of concentrate and feed grain feed demand with respect to livestock price across livestock groups. Using feed demand parameters by livestock category enables analysts to evaluate policy effects of changes in feed demand quantities and feed costs within the livestock economy, as well as to provide more reliable estimates of the total change in feed demand.Livestock Production/Industries,

    Interplanetary Trajectory Optimization with Powerlimited Propulsion Systems

    Get PDF
    A trajectory-optimization process is described in which the optimum thrust equations are derived using the calculus of variations. The magnitude of the thrust is constrained within an upper and a lower bound, but the thrust direction is arbitrary. This formulation allows both the constant-thrust program and the variable-thrust program to be considered. For the constant-thrust program, certain propulsion-system parameters are optimized for maximum final vehicle mass. This theory has been used to study interplanetary missions to Venus and Mars using a power-limited propulsion system. Both one-way and round trip rendezvous trajectories are considered. The analysis employs a two-body inverse-square force-field model of three dimensions. An iterative routine used to solve the two-point boundary-value problem is described in the Appendix

    Reaction Diffusion and Ballistic Annihilation Near an Impenetrable Boundary

    Full text link
    The behavior of the single-species reaction process A+AOA+A\to O is examined near an impenetrable boundary, representing the flask containing the reactants. Two types of dynamics are considered for the reactants: diffusive and ballistic propagation. It is shown that the effect of the boundary is quite different in both cases: diffusion-reaction leads to a density excess, whereas ballistic annihilation exhibits a density deficit, and in both cases the effect is not localized at the boundary but penetrates into the system. The field-theoretic renormalization group is used to obtain the universal properties of the density excess in two dimensions and below for the reaction-diffusion system. In one dimension the excess decays with the same exponent as the bulk and is found by an exact solution. In two dimensions the excess is marginally less relevant than the bulk decay and the density profile is again found exactly for late times from the RG-improved field theory. The results obtained for the diffusive case are relevant for Mg2+^{2+} or Cd2+^{2+} doping in the TMMC crystal's exciton coalescence process and also imply a surprising result for the dynamic magnetization in the critical one-dimensional Ising model with a fixed spin. For the case of ballistic reactants, a model is introduced and solved exactly in one dimension. The density-deficit profile is obtained, as is the density of left and right moving reactants near the impenetrable boundary.Comment: to appear in J. Phys.

    Commercial air transport hazard warning and avoidance system. Volume 2 - Requirements studies Final report

    Get PDF
    Operational requirements and cost effectiveness of commercial air transport hazard warning and avoidance syste

    Short-Run Economic Impacts of Hurricane Katrina (and Rita)

    Get PDF
    Sturm; Erdölförderung; Offshore-Industrie; Makroökonomischer Einfluss; USA

    Industrial structural geology : principles, techniques and integration : an introduction

    Get PDF
    The authors wish to acknowledge the generous financial support provided in association with this volume to the Geological Society and the Petroleum Group by Badley Geoscience Ltd, BP, CGG Robertson, Dana Petroleum Ltd, Getech Group plc, Maersk Oil North Sea UK Ltd, Midland Valley Exploration Ltd, Rock Deformation Research (Schlumberger) and Borehole Image & Core Specialists (Wildcat Geoscience, Walker Geoscience and Prolog Geoscience). We would like to thank the fine team at the Geological Society’s Publishing House for the excellent support and encouragement that they have provided to the editors and authors of this Special Publication.Peer reviewedPublisher PD

    On the direct indecomposability of infinite irreducible Coxeter groups and the Isomorphism Problem of Coxeter groups

    Full text link
    In this paper we prove, without the finite rank assumption, that any irreducible Coxeter group of infinite order is directly indecomposable as an abstract group. The key ingredient of the proof is that we can determine, for an irreducible Coxeter group, the centralizers of the normal subgroups that are generated by involutions. As a consequence, we show that the problem of deciding whether two general Coxeter groups are isomorphic, as abstract groups, is reduced to the case of irreducible Coxeter groups, without assuming the finiteness of the number of the irreducible components or their ranks. We also give a description of the automorphism group of a general Coxeter group in terms of those of its irreducible components.Comment: 30 page

    Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities

    Get PDF
    The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer

    Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport

    Get PDF
    Ancient sediments provide archives of climate and habitability on Mars. Gale Crater, the landing site for the Mars Science Laboratory (MSL), hosts a 5-km-high sedimentary mound (Mount Sharp/Aeolis Mons). Hypotheses for mound formation include evaporitic, lacustrine, fluviodeltaic, and aeolian processes, but the origin and original extent of Gale’s mound is unknown. Here we show new measurements of sedimentary strata within the mound that indicate ∼3° outward dips oriented radially away from the mound center, inconsistent with the first three hypotheses. Moreover, although mounds are widely considered to be erosional remnants of a once crater-filling unit, we find that the Gale mound’s current form is close to its maximal extent. Instead we propose that the mound’s structure, stratigraphy, and current shape can be explained by growth in place near the center of the crater mediated by wind-topography feedbacks. Our model shows how sediment can initially accrete near the crater center far from crater-wall katabatic winds, until the increasing relief of the resulting mound generates mound-flank slope winds strong enough to erode the mound. The slope wind enhanced erosion and transport (SWEET) hypothesis indicates mound formation dominantly by aeolian deposition with limited organic carbon preservation potential, and a relatively limited role for lacustrine and fluvial activity. Morphodynamic feedbacks between wind and topography are widely applicable to a range of sedimentary and ice mounds across the Martian surface, and possibly other planets
    corecore