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ABSTRACT

A trajectory-optimization process is described in which the optimum-

thrust equations are derived using the calculus of variations. The mag-

nitude of the thrust is constrained within an upper and a lower bound,

but the thrust direction is arbitrary. This formulation allows both the

constant-thrust program and the variable-thrust program to be con-

sidered. For the constant-thrust program, certain propulsion-system

parameters are optimized for maximum final vehicle mass. This theory

has been used to stndy interplanetary missions to Venus and Mars

using a power-limited propulsion system. Both one-way and round-

trip rendezvous trajectories are considered. The analysis employs a

two-body inverse-square force-field model of three dimensions. An

iterative routine used to solve the two-point boundary-value problem

is described in the Appendix.

I. INTRODUCTION

This Report presents the results of a systematic inves-

tigation of the payload capability of power-limited
low-thrust vehicles for various interplanetary missions.

The analysis is based upon a two-body inverse-square
force field model of three dimensions in which the trajec-

tory is optimized in the sense of maximizing or minimiz-

ing some terminal quantity such as time or vehicle

payload while simultaneously satisfying other specified

terminal quantities.

Two thrust programs are described which bracket that

class of trajectories and vehicle performances that an
actual vehicle would be capable of achieving. These

thrust programs are characterized by either a constant

exhaust velocity of the expellants and hence, constant

thrust, or by an exhaust velocity that is unconstrained in

magnitude, the latter program giving rise to the so-called

optimum-thrust equations of power-limited flight (Refs.

1, 2) and yielding the absolute maximum payload the

vehicle may have for a given power level. For a particu-

lar mission, the generation of a pair of traiectories using

the two thrust programs is extremely valuable in the

determination of mission feasibility, payload capability,

and trajectory design.

The optimization of the trajectory is accomplished by
a calculus-of-variations method in which a terminal quan-

tity is maximized or minimized subject to prescribed

boundary conditions and certain constraints; namely, the

equations of motion and the thrust program. An iterative
routine is used to solve the two-point boundary-value

problem in order to obtain numerical solutions for speci-
fied terminal conditions.

The results of this investigation include the generation

of optimum rendezvous and round-trip trajectories for a

typical mission to Mars. A comparison of the results
obtained from an analysis of transfer between coplanar
circular orbits assumed for the Earth and Mars and the

results of an analysis of the transfer between the actual
three-dimensional orbits of the Earth and Mars is also

mentioned.
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II. OPTIMUM-THRUST EQUATIONS

The problem of optimizing the trajectory of an inter-

planetary vehicle is very conveniently treated as a

calculus-of-variations problem of the Mayer type, in

which a function of the generalized coordinates of the

endpoints of the trajectory

I = ] [qj (tl), qj (to), tl] (1)

is extremalized subject to certain boundary conditions

and certain constraints; namely, the equations of motion,

the thrust program constraints, etc. The constraining
equations are

v+ VU-a=O (2)

v - _ = 0 (3)

a - /3 _ = 0 (4)
c /x

7_, (5)

Equations (2) and (3) are the equations of motion, where

r is the position vector of the vehicle and U is the poten-
tial of the force field. The thrust acceleration is defined

by Eq. (4), in which /_ is the normalized vehicle mass

and ap is a normalized power parameter ranging between

a value of unity (maximum power) and zero (coasting), as

will be shown subsequently. The bounds on av may be

expressed in analytic form through the equality constraint

r2 _ _, (1 - _p) = o (6)

where _/is defined to be a real variable. The quantity 3

appearing in Eqs. (4) and (5) is twice the maximum power
in the rocket exhaust per unit initial mass of the vehicle

and is, therefore, a constant determined by the engineer-

ing design. The quantity c appearing in these equations

is the rocket exhaust velocity of the expellants, which is

either continuously variable or constant, depending upon

the thrust program used. Equation (5) is the normalized
differential form for the rocket mass.

Both the variable- and constant-thrust programs may

be solved by a consideration of a more general thrust

program containing both of these modes, in which c is

allowed to vary between two bounds. As before, these

bounds may be expressed in terms of an equality con-
straint of the form

_12 -- (Cma x __ C)(£ -- ffmin) = 0 (7)

where ,/ is defined as a real variable. By solving the

calculus-oLvariations problem with this additional equal-

ity constraint, the optimum-thrust equations for the pro-

grams under discussion are obtained quite simply by

setting Cmin z 0 and c ..... = oo for the first case and by set-
ting Cm,, = C..... = constant for the second case.

A Mayer formulation (Ref. 3) has been applied to this

more general problem to obtain the optimum-thrust
equations. The present treatment is similar to that fol-

lowed by Miele (Ref. 4), Lawden (Ref. 5), Leitmann
(Ref. 6), and others.

Let qi (t) denote both the state and the control vari-

ables of the problem (j= 1,2,-..,n). Let the con-

straining relations be denoted by the functions

G i(qj,qj,t) = 0 i= 1,2, " • " ,m < n (8)

and let hi (t) be a set of time-dependent Lagrange mul-

tipliers. Let F be a function defined by

F = Xl Gi (9)

where the summation rule is employed. As necessary

conditions for extremizing ], the qi must satisfy the
Euler-Lagrange equations given by

d aF aF
--0 j= 1,2, " • " ,n (10)dt _qj _qj

at all points along the trajectory except at corners; i.e.,

points of discontinuity in one or more of the qs. Further,
at such corners, the Weierstrass-Erdmann corner condi-

tions must hold; namely,

_F.

8q-"7Js continuous j = 1, 2, • . • ,n (11)

OF . .

F - _--_ qi is continuous (12)

If the constraining functions are not explicit functions of

time, a first integral of the Euler-Lagrange equations is

_F,

F - _ qs = constant (13)

One additional tool from the calculus-of-variations will

be needed in dealing with corners; namely, the Weierstrass

E-function. This function yields a further necessary con-

dition for the minimization of ] by the inequality

2
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_F _.
= F 4;) - F - - 4k)G - 0

(14)

The q_ is an admissible value in the vicinity of qj. For
continuous variables, q_ = q j; however, for discontinuous

variables, q_ may take on any value consistent with the

specified bounds.

In three dimensions, Eqs. (2) to (7) form a system of

ten constraining relations which must be included in the

optimization process. There are in this formulation four-

teen variables, of which v, r, and t_ are the state variables;

av, c, and a are the control variables, with the latter being

related through Eq. (4); and the quantities s and y are

auxiliary variables. In this problem, G,, G_, and G3 are

the equations of motion contained in Eq. (2); the func-

tions GT, G_, G0, and G10 are Eqs. (4), (5), (6), and (7),

respectively.

The Euler-Lagrange equations for this problem are

given by the relations

or

v, r:'/_+ (x. V) Vu = 0

a:l.K-Ar=0

(15)

(16)

K - 1_.7 = 0 (16a)

/z: X8 -- -_Xr = 0 (17)
c/x z

c:-- • s +Xzo(2C__Cmt,__Cma,) =0 (18)
C z

fl X7
av:'-_-('; _s)--Xo(2ap-- 1)=0 (19)

(20)

(21)

y: 7Xo = 0

7: pX_o = 0

where the vector I is the unit thrust vector and is equal to

a/a. The vector k is the vector sum of the three orthogonal

quantities M, M, and M, the magnitude of k hereafter

being denoted by X.

Since the potential U is assumed to be explicitly inde-

pendent of time, the Euler equations admit a first integral
of the form

k'v+k'VU-fl-'a( l'kc v t t _)=constant=K_ (22)

where X_ has been replaced by 1 • k. Now, an application

of the Weierstrass-Erdmann corner conditions yields the

following summary:

(1) Continuous variables: r, v, t_

(2) Possibly discontinuous variables: l, _, c, _, '7, and ap

(3) Continuous Lagrange multipliers: k, ),, Xs

In view of the continuity considerations above, the

Weierstrass E-function becomes

E=-_( |'Kc _ Xc_)-"_(l'-'Kc\ t_ As)_-_07 (23)

Since condition (23) holds for all admissible values of the

pertinent variables, it holds, in particular, when ap = a;

and c = c*; thus,

(l.k) - (I'.K) _0 (24)

In order for (24) to be true, l must be chosen so as to
maximize l • k, which, of course, is maximum when I and

k point in the same direction. Thus, 1 and k are sim-

ilarly aligned, and the dot product 1" ), is equal to the

magnitude of k or X.

A function L is defined as

L = £ - X-'2 (25)
_t c

and is substituted in Eq. (23) to yield

avL a* L*-_- _- o (26)
£ C*

In this treatment, e is restricted to be either a continuous

variable or a constant, with bounds indicated by Eq. (7).

In this case, L is a continuous function, and Eq. (26)
reduces to

L (a v - a_) _ 0 (27)

It will be shown subsequently that _p is restricted to the

values of 1 and 0. It follows from Eq. (27) that

L _ O, a_ = 1 (28a)

L L O, a_ = 0 (28b)

Thus, negative values of L indicate coasting periods along

the trajectory. Furthermore, the continuity of K2 implies

that av may change in value only at points where L
is zero.

Equation (20) implies that either M is zero (ap variable)

or is zero (a_ = 1,0). If M is zero, Eq. (19) implies that

cX
= -- (29)Xs

tt

which, when combined with Eqs. (5) and (17), yields

3
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constant
,ks- (30)

/z

However, Eq. (19) then implies that

constant
k - (31)

C

Now, Eq. (21) shows that 'k10 is zero in the variable-thrust

mode. When 'klo is zero, Eq. (18) is incompatible with

Eq. (31), from which it follows that Eq. (31) can hold
only during the constant-thrust mode, and, therefore,

'k = constant (32)

The occurrence of a constant ,k_ is extremely unlikely

in most potential fields. The two- and three-dimensional

harmonic-oscillator potential is a noticeable exception.

Lawden (Ref. 7) has recently discussed this singular case

for a two-dimensional inverse-square field. Corben (Ref. 8)
has shown for this case that the direction of k relative to

the local horizontal is constrained to lie within approxi-

mately 35 deg of the local horizontal. The combinations

of the two constraints of constant 'M and bounded direc.

tion rule out Eq. (32) for the particular planetary rendez-

vous and round-trip missions to be discussed. For this

treatment, then, it follows that ,k9 is not zero except at

discrete points along the trajectory, and, therefore, the

thrust parameter ap is zero or unity, depending upon the
sign of L.

Consider the transfer from one thrust mode to the

other. If ,klo is zero, it follows from Eq. (18) that

(, /./7 a,

and since ,k/2_ is positive, the non-trivial conclusion is

that L is positive and that, during the variable-thrust

mode (VTM),

,k

L 2_t - 0 (VTM) (34)

and the value of av is equal to unity. Equations (34), (25),

and (17) then yield

A
z --

,k_ /_z (VTM) (35)

which, in turn, yields for the exhaust velocity

2A
c- /_X (VTM) (36)

and, for the thrust acceleration,

fi,k (VTM) (37)a- 2A

where A is a constant determined by initial conditions.

If ,klo is not zero, _ must be zero, and the constant-thrust

mode (CTM) is operative. In this case, L is unrestricted

and is given by Eq. (25). In numerical studies, it has been

convenient to eliminate ,ks because of its dependence on

exhaust velocity. In the limiting case of infinite exhaust

velocity (constant-thrust acceleration), both Eqs. (17) and

(25) encounter difficulty. This is obviated by employing a

differential equation in L in place of Eq. (17). It is easily

shown for the constant-thrust mode, using Eqs. (5), (17),
and (25), that

L
- -- = 0 (CTM) (38)

In summary, the continuity of K_ requires that the
transfer from one thrust mode to another occur when
the conditions

,k

L = 2--; (390

_7= 0 (39b)

occur simultaneously. The thrust acceleration in the

constant-thrust mode (CTM) is given by

a= fl__ _.
f _ 'k £ = Ema x or c = Crnin (40)

and, in the variable-thrust mode, by

flk
a- 2A (41)

A diagram showing the switching sequence just

described is shown in Fig. 1 for a 184-day Mars rendez-

vous trajectory. The variation of the exhaust velocity for
this trajectory is shown in Fig. 2.

A typical rendezvous trajectory customarily starts with

the exhaust velocity at the lower limit Cmln. When the

conditions become appropriate, a change is made to the

variable-thrust mode, during which the exhaust velocity

increases until it reaches the upper limit c .... At this

point, the vehicle operates at a constant thrust, with an

exhaust velocity equal to c .... During this interval, a

coast period may or may not be called for; in the example

presented in Figs. 1 and 2, a coast period is desired. It

is important to note that a coast period on an optimum

trajectory is only allowed during the time the vehicle

is operating with the exhaust velocity equal to c.... After

some time, the conditions will become such that a return

to the variable-thrust mode is desired. The trajectory may

end in this mode, or, as in the example, a return to the

constant-thrust mode, with c = Cmin, will occur.

4
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Fig. 1. Thrust-mode transfer sequence, 184-day

Mars trajectory

A comparison of the performance of a vehicle using

the various thrust options is interesting. Using fa 2 dt as

E

p-

so0_oo

500,000

400,000

300,000

200_000

Ioo,ooo

_¢p:Ol 0==50 ,000

,

\
/ Cmin= IOO,O00 m/sec

J
/

m/sec

o
o zo 40 6o 8o too _20 _40 IS0

TIME, d0ys

Fig. 2. Exhaust velocity vs time, 184-day

Mars trajectory

[
180 200

a criterion of vehicle performance as described in Sec-

tion III, the values shown in Table 1 result.

Table 1. Comparison of vehicle performance

cmt., m/sec Cm,x, m/sec fa=dt
kw/kg X 10 = Comments

0

0

100,000

100,000

I 18,500

oo

500,000

500,000

100,000

118,500

6.5760

6,5903

6.6196

7.9493

7,5520

Variable thrust only

Upper limit only

Both limits

Constant thrust only

Optimum constant
thrust

5
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III. OPTIMIZATION CRITERIA

Three criteria which may be considered are (1) final

vehicle mass, (2) minimum fa 2dt, and (3) minimum flight

time for a given final vehicle mass. The variable-thrust

program optimizes all three of these criteria simultane-

ously if the exhaust power is constant. The constant-thrust

program, however, possesses coast periods, and, by allo-
cating different-length coast periods, one can obtain tra-

jectories satisfying different criteria.

From the calculus of variations, certain transversality

conditions hold at the end points of the trajectory. There

may be boundary conditions which can be formulated in

terms of the variables of the problem. Let these condi-

tions be described by the function

Av (qi (t0), qi (tl), to, tl) = 0 v = 1, 2, "" ', _ 2n + 1 (42)

The transversality condition for this Mayer formulation
is, thus,

K d,+ = 0 (431
where

and

/4 : I + pvA_ (44)

where the ov are constant multipliers to be determined

at the end points and ] is the function to be minimized.

The dqi are arbitrary total variations in the variables

at the end points subject to the condition that the expres-

sions in Eq. (42) be satisfied. If the value of a variable

is specified explicitly at the end point, the eorresponding
variation is zero.

The optimization is now applied to the criterion of
maximum final mass for fixed end conditions. At a fixed

terminal time, let the quantity to be minimized be some

function of the final mass; namely,

] = - k_ (t,) (46)

where k may be some abitrary positive constant.

Let all the remaining end conditions be independent

of/_. An application of Eq. (43) yields

)t8 (to) = unspecified (47)

x. (t,) = k (48)

It is observed, however, that Eqs. (15) to (23) are homo-

geneous in the Lagrange multipliers; they may, therefore,

be sealed without affecting the trajectory, and it follows

that Eqs. (47) and (48) are superfluous as boundary

conditions. Consequently, it is quite unnecessary to relate

a particular Lagrange multiplier to some variable such

as _, as some writers have done. The important point is

that for specified values of /3 and c and for speeified

terminal conditions, the Euler-Lagrange equations guar-

antee an extremal in _l by optimum programming of the
thrust vector.

However, for a particular /3 and for specified end

conditions, there is an optimum choice of exhaust veloc-

ity c which maximizes the final vehicle mass. Isolating
this value of c may be accomplished by introducing a

new constraining equation into the formulation in the
form

/3.
G. = 7 c = 0 (49)

and ignoring Eq. (18), since c is a constant. The Euler-

Lagrange equation for the exhaust velocity thus becomes

(5o)

and the transversality condition yields

/_'11 (to) m Xl I (tl) = 0 (51)

A trajectory which terminates with a value of zero for XH

therefore possesses an extremal in _ with respect to c?

The last entry in Table I is the optimum c for that mission

(Mars rendezvous, launch date 5/13/71, flight time 184

days) and the value of/3 (0.1 kw/kg) which was used.

Now, consider the minimization of fa _dt. Satisfying

Eq. (51) also yields an extremal in this integral with

respect to c, since it may be written as

a2dt = 1 1 (52)

*Implicit in this process and also in the variable-thrust program
is the assumption that/3 is independent of c. In an actual propul-
sion system, /3 is related to c through the efficiency of conversion
of power from the power plant to the rocket exhaust power.
The quantity M, may be modified to include the variation of effi-
ciency with c and generally leads to somewhat higher values
of c. This will be discussed more fully in a subsequent report.

6
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It is advantageous, however, to consider the minimization

of this integral for a fixed c and fixed tl by changing the

initial thrust acceleration ao. This integral is fairly insen-

sitive to the value chosen for c, so long as it is in the range

typical of low-thrust propulsion systems; it approaches a

limiting value for infinite exhaust velocity. Dividing by c

to deal also with the limiting case, an a0 will be found

which extremizes the expression

If0 t' I x lil- az dt = ao
c /_ (tl) _ _-to /x (to) = 1 (53)

The approach is the same as that followed in Eq. (49);

the additional constraining relation

G12 = ,_o= 0 (54)

is introduced, with Eq. (18) again being ignored. The

resulting Euler-Lagrange equation is

;,1_+ _ = 0 (551

An application of Eq. (43) yields

x,_(to)= o (56)

At the terminal point, both ao and t_ = tL (tl) are unspeci-

fied. Thus, upon minimizing the function,

, ,f (1)= -- a_'dt = kao - 1 (57)
g

of the endpoints, where k is again some arbitrary con-

stant, Eq. (43) will yield the following two equations:

ktl()

x_ - 0 (58)
/f-'

_.v-,-+-k ( 1- 1)=0 (59)

which, upon eliminating k, yields the transversality
condition

[ ,,0>
to be satisfied at the terminal point so that ] in Eq. (57)

will be an extremal with respect to a,. This transversality

condition, upon applying Eqs. (5), (17), and (25), becomes

I t'- = 0 (61)

For minimum-time trajectories with specified end con-

ditions and specified final mass _ (tl) or fa 2dt, the propul-

sion system is simply forced to operate over the entire

trajectory.

7
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IV. INTERPLANETARY RENDEZVOUS TRAJECTORIES

In a planetary rendezvous mission, six terminal quan-

tities must be specified; it is convenient to group these
into five which determine the size and orientation of the

terminal orbit and one quantity which determines the

rendezvous point on the orbit. These first five quantities

are the semimajor axis and eccentricity or, equivalently,

the energy and angular momentum of the terminal ellipse,

and the orbital inclination, the argument of perigee, and

the longitude of the line of the ascending node. The

position on the ellipse is determined by the true anomaly;

that is, the angle from perigee to the rendezvous point.

The optimum orbital transfer or rendezvous occurs

when the terminal position on the orbit is left unspecified

and the resulting transversality condition derived from

Eq. (43) is satisfied. The satisfaction of the transversality

condition guarantees an extremal in the quantity being

minimized; and both relative maxima and minima may

result from satisfying this condition. When the terminal

position or rendezvous point is left unspecified, an appli-

cation of the transversality condition yields

_..v + X.Vu = 0 (62)

to be satisfied for an extremal in the quantity being opti-

mized with respect to true anomaly.

As an example of the application of this theory to

mission feasibility studies, the results from an extensive

set of rendezvous trajectories from Earth to Mars and

from the Earth to Venus are presented. The formulation

of these equations has been programmed on the JPL

IBM 7090 digital computer. In order to overcome the

two-point boundary-value problem, this program has

been coupled with an iterative routine to converge upon

the specified terminal conditions. By this procedure,

parametric analyses have been conducted efficiently

through the large-scale production of interplanetary tra-

jectories with wide ranges of mission conditions and

flight times. A description of the present method of solu-

tion of the two-point boundary-value problem as applied

to the basic trajectory program has been included in the

Appendix.

In the first example to be presented, a two-dimensional

heliocentric inverse-square central-force-field model is

employed. The departing orbit of the Earth is assumed
circular, with a radius of one astronomical unit from the

Sun. The arrival orbit has the semimajor axis and eccen-

tricity of either the Martian or Venusian orbit, as the

case may be. The assumed values for these orbits are:

Mars Venus

Semimajor axis, AU 1.523691 0.723332

Eccentricity 0.093371 0.0

The terminal conditions are, therefore, specified values of

energy and angular momentum; the transversality con-

dition (62) is specified, and in all trajectories, the rendez-

vous point and the orientation of the terminal orbit are

unspecified. By using a polar formulation (Ref. 11) for

the equations of motion, a constant of integration K, in

the Euler equations results from the cyclic nature of the

polar angle. It may be shown (Ref. 11) that if the ter-

minal orientation of the orbit is unspecified, the value of
K_ is zero for the fourth condition to be satisfied. Both

the variable- and the constant-thrust programs have been

used; unless otherwise noted, the exhaust velocity em-
ployed in the constant-thrust program is 50 km/sec.

The three trajectory types being considered-(1) vari-

able thrust, (2) constant thrust with an optimum coast

period, and (3) constant thrust, minimum time with no

coasting period-have been run for flight times ranging

from 40 to more than 300 days. The coast period for (2)

has been optimized, so that fa 2dt is a minimum, the

transversality condition (61) being satisfied. Figure 3

shows the variations of fa _dt with flight time for rendez-

vous at both the optimum and the worst point on the

Martian orbit. Figure 4 is the equivalent plot of fa z dt

with flight time for an optimum rendezvous on the

Venusian orbit, only one set of curves resulting because

of the circular end conditions. These Figures afford an

interesting comparison between the variable-thrust and

the constant-thrust programs. The increase in fa _dt from

using a constant-thrust program with optimum coast

instead of a variable-thrust program is about 15_. In

typical missions, this produces about a 45g decrease in

final vehicle mass, as may be verified directly from

Eq. (52). For continuous-thrust interplanetary trajectories,

it is known (Refs. 2, 9) that the effect of the planetary

orbital inclinations on the value of fa 2dt or final vehicle

mass is quite small; in the case of Mars, the 1.85-deg

orbital inclination increases the value of fa2dt in the

three-dimensional variable-thrust trajectories by less than

1_. Consequently, Figs. 3 and 4 yield a highly valid esti-

mate of the payload capabilities of power-limited propul-

sion systems for Mars and Venus rendezvous missions.

8
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The _a" dt is fairly insensitive to the exhaust velocity

employed in typical cases, but it does become sensitive

for extremely low values or short flight times. Table 2

compares this integral for exhaust velocities of 50,000

m/sec and infinity (constant acceleration) for the Mars

optimum coast trajectories.

If payload maximization is the desired end, the pro-

cedure which optimizes the value of the exhaust velocity

is strictly the proper approach; however, the payload is

then strongly dependent upon the value of/_ employed,

and, consequently, this procedure is dependent on the

power and efficiency ratings of the particular propulsion

system and power supply under consideration. For para-

metric studies, the fa _dt, because of its near invariance

to the propulsion-system ratings, is of more utility. A

specific example may be found in Ref. 11 for an optimi-

zation of the final mass with respect to exhaust velocity.

Table 2. Comparison of Sa2dt for exhaust velocities
of 50,000 m/sec and o0

T

days

50

100

150

2OO

250

3OO

to=dr, kw/kg X 10 =

c = 50,000 m/sec

556.03

59.821

15.263

5.6225

2.7279

1.1380

czOO

525.11

59.250

15.225

5.6138

2.7222

1.1338

9
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V. THREE-DIMENSIONAL RENDEZVOUS TRAJECTORIES

As a second example, the results from a series of three-

dimensional rendezvous trajectories from Earth to Mars

are presented. These trajectories utilize the actual posi-

tions and velocities of the Earth and Mars during the era
of 1970-71 as initial and terminal conditions. A six-

dimensional version of the iterative routine was used to

obtain these converged trajectories using the variable-

thrust program. Figure 5 shows the variation of fa 2dt

with heliocentric launch date for three flight times-120,

184, and 360 days. The minima of these curves corre-

spond to a planetary configuration in which the trans-

versality condition that Eq. (62) have the same initial

and terminal value (not necessarily zero) is satisfied.
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g
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. z 4 5 e ,o i_ _3 _4 _e _7 ,s 2o z. z_ OA_'
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Fig. 5. fa2dt vs launch date; 120-, 184-, and 360-day

Martian rendezvous trajectories during 1970-71

The year 1971 is a "vintage year" for low-thrust tra-

jectories to Mars, because both the transversality condi-

tion (62) and a zero value of K1 are nearly simultaneously

satisfied for all flight times, and the trajectories rendez-

vous very close to the optimum point on the Martian

orbit. Thus, the minima of these curves fall almost exactly

along the lower variable-thrust curve in Fig. 3. For the

subsequent synodic era in 1973, the minima have a larger

value of Sa 2dt, and by 1977 and 1979, the Earth-Mars

configuration is such that the trajectories rendezvous near

the least-optimum point and the minima, occurring late

in these years, lie near the upper variable-thrust curve

in Fig. 3. In any era, the minima are bounded between

these two curves in Fig. 3. Figure 6 exhibits contours of

equal _a 2dt with flight time versus heliocentric launch

date. From these Figures, the range of optimum launch

dates for either minimum fa 2dt or minimum flight time

may be found. The locus of minimum flight time for a
given fa "xdt will pass, for zero flight time, through the

date of opposition, which is about August 10, 1971.

..I.._ll/i
/_

\.',,,.'.--;I I I
_\\W / /

/ J

I --
t

JUL AUG SEPTOCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC JAN

1970 LAUNCH DATE 1971

Fig. 6. Contours of equal fa_-dt, flight time vs launch

date for Martian rendezvous trajectories

during 1970-71

These curves are not unique, because there exist classes

of trajectories yielding extremals in _a _"dt which, for a

given launch date and flight time, rendezvous Mars but

make an arbitrary number of circuits around the Sun

either in the forward or retrograde directions. Of partic-

ular interest is that class of trajectories which make one

additional circuit around the Sun and which correspond

to the optimum set in the following synodic era of 1973,

just as the ones shown are optimum for the 1970-71 era.

For a given flight time, there clearly exists a launch date

which is a trade-off point and for which, for later dates,

10
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the optimum path is obtained by adding to the transit

required to rendezvous Mars.

The increased steepness on the ascending branches of

these curves may be explained in terms of the decreasing

transit angle of the trajectory with increasing launch

dates as the Earth and Mars approach opposition. A more

radical thrust program than that for the minimum transfer

is required to accomplish the mission.

The shape of these curves is nearly the same when a

constant-thrust program is employed. The minima occur

at almost precisely the same dates, within one or two

days. The values of fa 2dt, as explained in Section IV, will

increase by approximately 155.

VI. INTERPLANETARY ROUND-TRIP TRAJECTORIES

Considerable simplification is possible in making pre-

liminary round-trip calculations for transfer between the

Earth and the other planets by assuming that the orbits

of the Earth and the destination planet are coplanar and

circular. A round-trip mission can generally be divided

into the following phases: (1) an Earth escape, (2) an

Earth-planet transfer, (3) planetocentric capture, (4) a

waiting or reconnaissance time at the planet, (5) planeto-

centric escape, (6) a planet-Earth transfer, and (7) an

Earth capture. In many instances, only a loosely bound

orbit may be required at the destination planet, so that

the propellant requirements for phases (3) and (5) may be

negligible. If a relatively tightly bound orbit is required,

however, the propellant consumption would need to be

considered for these phases.

In the following analysis, the emphasis is solely upon

the heliocentric phases of the trajectory; propellant

requirements may be made for the Earth-escape and

-capture phases and the planet-capture and -escape

phases by referring to Ref. 9. A further simplification is

possible by utilizing a variable-thrust program for the

heliocentric-transfer phases, the fa 2dt derived for the

variable-thrust program being approximately 15_ less

than for the equivalent mission utilizing a constant-thrust

program with an optimum coast period.

!1
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VII. ROUND-TRIP TRAJECTORY CALCULATIONS FOR AN EARTH-TO-MARS MISSION

Let Tr, be the flight time in days and Or_ the transit

angle covered during this time for the Earth-to-Mars

phase, and let TF: and 6r_ be the equivalent quantities

for the Mars-to-Earth phase. If the launch time, reckoned

from opposition, is denoted by TL1, then, for the Earth-
to-Mars phase,

(he -- nm)TL, = n m TF1 -- 0T1 (63)

and for the Mars-to-Earth phase,

(n, - n,_) Tw. = Or2 - n_ TL2 (64)

where n_ and n,_ are the mean daily motion of the Earth

and Mars, respectively. Values of the mean daily motion

of these two planets may be had from the American
Ephemeris and Nautical Almanac and are

n_ = 0.985647 deg/day

n, = 0.524033 deg/day

In the case of orbital transfer or rendezvous, the maxi-

mum payload results when the transversality condition

(62) is satisfied. For the variable-thrust program, the opti-
mum transit angle which results when (62) is satisfied

may be approximated quite accurately as a function of

flight time Te in days by

0r (optimum) = 4.298 + 0.706 Te deg (65)

for coplanar transfer between circular orbits of the Earth

and Mars or between Mars and the Earth. Using the

optimum value of 8r in Eqs. (63) and (64), the optimum
launch times for Earth to Mars and for Mars to Earth

may be determined. Thus,

Tr_ (optimum) = - 9.311 - 0.394 Trl (66)

TL2 (optimum) = 9.311 - 0.606 Tr2 (67)

Now, the arrival time at Mars is found by adding TF1
to TL_ :

TA1 (optimum) = --9.311 + 0.606 Trl (68)

A cursory examination of TAt and TL2 in Eqs. (67) and

(68) above reveals the interesting fact that it is not

possible to launch on the optimum date for both out-

going and incoming phases of the trajectory unless one

waits nearly a full synodic period of Mars (T,y,od_c = 779.94

days) before returning to the Earth. If a shorter total

trip time is desired, a compromise must be made on one

or both phases of the trajectory by intercepting one or

the other planet at a non-optimum point on the orbit.

As an example of a typical mission, a number of Earth-

Mars round-trip trajectories were calculated, in which

the total heliocentric trip time was 544 days, including

496 days under power and a 48-day waiting period at

Mars. The results of this investigation are shown in Fig. 7,

which is a graph of fa _dt versus launch time for several

combinations of powered flight times which satisfied the

relation Trl + TF_ = 496 days.

Contrary to what may have been expected, the mini-

mum values of fa _dt for this particular example do not

occur when the total powered flight time is divided

equally between TF, and Tv_ but rather somewhere near

the ratio of 5TF,:3Tr_. Thus, curve 3 in Fig. 7 for

T_, = 184 days and TF_ ------312 days presents the minimum

value of the integral. Furthermore, the minimum value

1,00
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o.c_ \" ---'_ \ \ \

-- FLIGHT TIME, days -- • L:N_,'_\ \.
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TO MARS EARTH

_O mz 344 __
® _68 328
(_ 184 312

o.oz-- (_)ZOO 296 --
® 216 zoo
(_ 232 264

® 248 248
o.o. I 1 I

-4.0 -4oo -,.o .o o

A
/#

//!
"/1
7!

LAUNCH DATE, days from opposition

Fig. 7. fa2dt vs launch date, 544-day Martian round trip
with circular end conditions
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of the integral occurs at a launch time which very nearly

corresponds to the optimum launch time for the shorter

flight time; in this case, T_1.

It is important to note at this point that the combina-

tion of TF_ = 312 days and TF2 = 184 days is equally

acceptable, this combination not being shown in Fig. 7,

since it is the mirror image of TF_ = 184 days and

TF2 = 312 days. The optimum launch time is such that

the shorter flight time occurs nearly optimally. The opti-
mum Earth-to-Mars launch time occurs, for this latter

case, at Tt,1 = -488 days, as contrasted to T_,I = -80 days

for the example used in Fig. 7.

The effect of increasing or decreasing the waiting time

at Mars while keeping the powered flight time fixed is

to increase or decrease the value of fa _dt, a 100-day

waiting period having the effect of increasing the value

of the integral by about 20_ over the equivalent trajectory

with no waiting period. The effect of shortening the total

powered flight time is to increase the value of the integral.

Lengthening the powered flight time does the opposite;

i.e., it decreases the value of the integral.

The Mars-to-Earth transfer phase with the longer flight

time, TF,_ = 312 days, accomplishes rendezvous with the

Earth at some distance from the optimum transit angle.

For the trajectory, which corresponds to the minimum

value of fa 2dt in Fig. 7, the transit angle is about 135 deg

greater than optimum. It is characteristic of the transfer

trajectories between circular coplanar orbits, where the

transit angle is greater than optimum, that the transfer

orbit will pass within the orbit of the Earth; in the present

example, the path comes to within approximately 0.5 AU

of the Sun. These optimum trajectories are quite similar

in some respects to the non-optimum transfer trajectories

employed by W. E. Moeckel of the Lewis Research Center

(Ref. 10).

13
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VIII. A THREE-DIMENSIONAL EXAMPLE OF A 1971-1972 MARS ROUND-TRIP MISSION

In order to present a more sophisticated example of a

Maxs round-trip mission, a three-dimensional analysis was

conducted for an era 1971-72, in which the actual ephem-

eris positions of the two planets were matched at the

appropriate rendezvous points. The example presented

here is that which matched as closely as possible the con-

ditions of the trajectory which produced the minimum

value of fa 2dt in Fig. 7.

The following heliocentric launch and arrival dates

were found appropriate for this example:

Launch date, Earth-to-Mars transfer, May 13, 1971

Arrival date at Mars, November 11, 1971

Launch date, Mars-to-Earth transfer, December 31,1971

Arrival date at the Earth, November 7, 1972

As before, the flight times are Trl--184 days and

Tr2 --- 312 days.

In order to calculate the exhaust velocity required and

the propellant consumption, a value of 5 kg/kw was

assumed for the specific weight a of the power plant,

this value being typical of those being used in other

vehicle studies (Ref. 10). In addition, a power-plant-

weight to initial-weight ratio of 0.25 was assumed. The

resulting value of the quantity _ used in the variational

formulation is thus 0.1 kw/kg.

Plots of the projection of the trajectory on the ecliptic

plane are shown in Figs. 8 and 9. The Earth-to-Mars

transfer shown in Fig. 8 has a transit angle of 145 deg

and a value of Sa 2dt of 0.006576 kw/kg. The behavior of

the return trip shown in Fig. 9 is as described previously:

the trajectory passes within the orbit of the Earth at

around 126 days and thus spends about 186 days within

the orbit of the Earth on the return voyage. The transit

angle for the return voyage is almost exactly 360 deg

and the value of fa 2 dt is 0.024990 kw/kg.

The manner in which the exhaust velocity varies during

the trip is shown in Fig. 10. As may be seen in Table 1,

it is most likely that the total excursion of the exhaust

velocity could be reduced considerably by introducing
maximum and minimum constraints of the exhaust veloc-

ity of Cmln_C_Cmax without adversely affecting the

value of the Sa2dt.

ORBIT

184

o 0.5 I,O 1.5

MARS_
T=O

64

ORB IT

Fig. 8. Earth-to-Mars transfer trajectory, 184-day

flight time, ecliptic projection

121 AT

T=O
EARTH

ORBI1

0 0.5 1.5

ORBIT

Fig. 9. Mars-to-Earth transfer trajectory, 312-day

flight time, ecliptic projection

14



JPL TECHNICAL REPORT NO. 32-173

The total fractional mass remaining at the end of the

voyage (for the heliocentric phase only) is given by

M,i,,,,, - 1 + -fi \Jo a_dt + a2dt (69)

and, using the values of the appropriate quantities,

yields

M,,itl,,= 1 + _1 (0.006576 + 0.024990) (70)
J(liliai 0.1

l%'lfi"ai -- 0.760 (71)
_lnitial

Since the power-plant weight ratio was assumed to be

0.25, the useful payload is 0.51 of the initial weight

injected into the heliocentric phase. The manner in which
the mass ratio varies as a function of trip time is shown

in Fig. 11.

A comparison of the fa _dt between the three-dimensional

example just presented and the example using coplanar,

- /E
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<i
•"r- 81
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circular end conditions which produced the minimum

.fa zdt in Fig. 7 is interesting (see Table 3).

Table 3. Comparison of fa2dt for three-dimensional

example and example using coplanar,
circular end conditions

Phase

Earth to Mars

Mars to Earth

ToIoI

Sa_dt

Three-dimensional

0.006576

0.024990

0.031566

kw/kg

Circular, coplanar

0.012909

0.019019

0.031928

Apparently, the conditions for the three-dimensional

example are such that, although, as expected, the Earth-

to-Mars phase produces a lower value for fa 2dt than for

circular conditions, the effects of the eccentricity of the

Martian orbit on the Mars-to-Earth phase result in a

larger value for fa _dt than for the equivalent mission

using circular end conditions. The net result is that the

total _aZdt appears approximately the same for the

exact three-dimensional example and for the example

/

0 40 80 120 160 200 240 360 400

TIME, days

Fig. 10. Exhaust velocity vs time, 544-day Martian round trip

440 480 520 560
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with circular, coplanar end conditions. Whether this is

true in general remains to be determined.

Although the use of coplanar, circular end conditions

gives a fairly good insight into the payload capabilities,

nevertheless the effects of the eccentricity of the Martian

orbit on the shape of the curves shown in Fig. 7 should

be examined more thoroughly. The effect of the inclina-

tion of the Martian orbit on the payload capability has

been examined previously for rendezvous trajectories and

has the effect of increasing the value of the .fa 2dt slightly.

Of more immediate interest, perhaps, would be the

influence of various thrust programs on fa z dt for these

round-trip missions.
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APPENDIX

I. SEARCH PROCEDURE FOR LOW-THRUST POWER-LIMITED PROPULSION SYSTEMS

A standard Newton-Raphson method is employed,

where a partial matrix is calculated numerically by per-

turbing xz. The problem solved is of the form

JFi(xi • • • XN)--YiI _ei i= 1 • • • N

where Fi may be a nonlinear function of xi. (The desired

values of the F, are the Yi. The degree of convergence
required between Yi and Fi is el.)

The partial matrix is formed by computing a standard or

nominal set of values F (xl)s and a set of perturbed values

F (xi)p by perturbing the nominal xi from i = 1 • • • N.

This is accomplished by integrating the given set of

differential equations as a function of time using a

Runge-Kutta fourth-order numerical integration scheme

as a starting integrator until n differences are obtained for

integrating with an Adams-Moulton predictor--corrector

integration package• Presently, n = 5. The augmented
partial matrix stored is of the form

-F1-F1, • • • F,v

X] -- Xls

F l - FI_

-- WNl_ m

X 1 -- X18

F_¢ - F_._

mXN -- XNs • . • X N -- XN8

AY1

A Y.v

;AYI = Yi - Fi
i=l-'•N

(A-l)

where the subscript s represents the standard or nominal

values and i,j = 1,'-. N the perturbed values. The
search matrix is

A = [ais ] k,xi-xi,.d"_ .°x'd_' i,j= 1 • • • N

(A-2)

A Gauss elimination method is then used to solve the

system of simultaneous equations thus generated• A set
of AX_ is obtained which are to be added to the nom-

inal x_ to give a new set of nominal x_ = x_ + Axe. An

iterative process is thus derived which is concluded either

by satisfying the ei convergence requirement or the con-

clusion of a specified number of iterations.

However, it is not always desirable from the standpoint

of machine time consumed to have to recompute the

partial matrix as the above description implies, since this

necessitates running a standard trajectory and N per-

turbed trajectories. To circumvent this, and assuming that

the elements of the partial matrices are near linear, an

attempt is made to integrate up to five additional nominal

trajectories before a recomputation of the partial matrix

is executed. If convergence is not obtained within the

one to five trajectories, the x_ of the last converging tra-

jectory are used as the nominal x_ for starting the recom-

putation of the matrix. A loop is then defined to be the

sequence starting with a nominal x, and terminating at

one of the one to five trajectories before a recomputation

of the partial matrix is deemed necessary. An iteration is
defined to be the number associated with each standard

or nominal trajectory computed, excluding the first. A
slight ambiguity thus arises between the standard tra-

jectory computed after the partial matrix and the first of

the one to five trajectories. Let Z represent a trajectory;

a typical sequence of computations is:

1 iteration 5 iterations

• I 2 3Z_o Z_ v • • Z_•p Z,, Z_ Z, Z, Z'_Z_

1 loop

1 iteration 5 iterations

• • 1 2 3 4 5Z_p " ZNpZ,2Z_ Z,Z, Z,Z, • • •

2 loops

It remains to describe the method of perturbing the x,,

which involves adding a 8xiv to the x, for each ith per-

turbed trajectory. This is accomplished by taking a per-
centage of the nominal x,. Thus,

xiv = xi_ + Pixi_ (A-3)

where P_ = percentage, i = 1 • • • N.

A flow diagram for the preceding search procedure is
shown in Fig. A-1.
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II. EXTRAPOLATION PROCEDURES

A. On Initial Conditions

Define a case to be that sequence of events which

results in a converged set of F_. It is now possible to exe-

cute a series of cases (call this a iob) by incrementing one

of the variables used in the calculations by a constant
delta until a maximum value of that variable is exceeded.

This necessitates determining a set of x_ to start each
successive case. The xi to start case 1 must be known.

Case 2 may be known, or the converged conditions of

case 1 may be used as the starting xi_ for case 2. Case 3

may be known, or the converged conditions of cases 1

and 2 are extrapolated linearly to give x_, for starting

case 3. Once case 3 is converged, the converged condi-
tions from cases 1, 2, and 3 are saved, and one of two

paths may be followed. Either a linear extrapolation

using cases 2 and 3 is used, or a quadratic extrapolation

using cases 1, 2, and 3 is used to obtain x_, for starting

case 4. The procedure, then, is to save the converged

conditions of the last two or three cases and continually
extrapolate to the next x_s until the maximum value of

the variable being incremented is exceeded. Thus, at the

most, it is necessary to know only the conditions x_., for

the first three cases. Dropping the subscript i and writing

the vector x in place of x_,

x,+l = 2x, - x,_l (linear extrapolation) (A-4)

x,+ 1 = a,x, - a:x,_ 1 + a3x,_ 2 (quadratic extrapolation)

(^-5)

The subscript n represents the converged point of the

current ease. The coefficients a,, as, a:, may be varied.

Nominally, two sets are used: (1) 2.5, -2.0, 0.5 and
(2) 3, -3, 1.

B. On the Partial Matrix

It is also expedient from the standpoint of real machine

time consumed to perform quadratic extrapolation of the

elements of the partial matrix. In order to accomplish

this, it is necessary to save the partial matrices of the first
three cases. Using Eq. (A-5), it is then possible to extrap-

olate a partial matrix for the fourth case element by

element. If this is done, it is necessary only to compute

the Z,,, of the first loop and check for convergence. If

convergence is not attained, the looping procedure

described is completed. The matrix elements used for

the extrapolation are the elements of the last three com-

puted partial matrices that give convergence. Thus, a

table containing these three sets of elements is continually

updated, and a partial matrix for the succeeding case may

be extrapolated.
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